Answer:
115 km/h
Explanation:
= Mass of car A = 690 kg
= Mass of car B = 520 kg
g = Acceleration due to gravity = 9.81 m/s²
a = Acceleration
u = Initial velocity
v = Final velocity



Converting to km/h

Initial velocity of car A = 115 km/h
The French were helped by the Hurons
We eat plants that use the energy from the sun to make food
Answer:
The final temperature is T2= 5.35°C
Explanation:
Apply the Gay-lussacs's law we have

P1, initial pressure= 5.00 x 10^6 Pa
T1, initiation temperature= 25.°C
P2, final pressure= 1.07 x 10^6 Pa
T2, final temperature= ?

Cross multiplying and making T2 subject of formula we have

T2= 5.35°C
Answer: a = 1.32 * 10^18m/s² due north
Explanation: The magnitude of the force required to move the electron is given as
F = ma
The force exerted on the charge by the electric field of intensity (E) is given by
F = Eq
Thus
Eq = ma
a = E * q/ m
Where a = acceleration of charge
E = strength of electric field = 7400N/c
q = magnitude of electronic charge = 1.609 * 10^-6c
m = mass of an electronic charge = 9.109 * 10^-31kg
a = 7400 * 1.609 * 10^-16/ 9.109 * 10^-31
a = 11906.6 * 10^-16 / 9.019 * 10^-31
a = 1.19 * 10^-12 / 9.019 * 10^-31
a = 0.132 * 10^19
a = 1.32 * 10^18m/s²
As stated in the question, the direction of the electric field is due north hence, the direction of it force will also be north thus making the electron experience a force due north ( according to Newton second law of motion)