1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mkey [24]
4 years ago
6

The Work-in-Process limit at the Analyzing step of the Program Kanban is based on the overall availability of Product Management

, other subject matter experts, and the capacity of which two other roles?
Physics
1 answer:
NeX [460]4 years ago
7 0

Answer:

The Work-in-Process limit at the Analyzing step of the Program Kanban is based on the overall availability of Product Management, other subject matter experts, and the available development capacity and the VA time percentage of each process.

Explanation:

The term work-in-progress (WIP) describes partially finished goods or raw materials, labor, and overhead costs at several stages of the production process to be completed in a production and supply-chain management . WIP (Work in Progress) limits restrict and balance, through kanban board columns,the amount of production to match demand to capacity so workflow is increased all along the line helping it to finish faster avoiding bottlenecks focusing only on current tasks without new work taken on.

A Kanban board requires knowledge to provide a clear view of the WIP limit reached point but it also requieres discipline and commitment from employees.

You might be interested in
Suppose the force of gravity on the electron was comparable to the electric force created by the deflection plates. how would th
Alexandra [31]
"F=Vector Sum Of The Two Forces" Is the answer.
3 0
3 years ago
Mr. Galonski loves to use the Electromagnetic Spectrum. Create a scenario in which Mr. Galonski is using waves from the electrom
Anestetic [448]

Answer:

The Scenario:

On a normal Sunday afternoon Mr. Golanski is sitting in his living room reading his book. He decides after a while to turn on the Television to see what’s on the news, (Mr. Golanski is using Radio waves when he turns his television on by signaling the TV from his remote control). After a few hours Mr. Golanski decides it’s time to have dinner. He heats up a quick meal in his microwave because he doesn’t have the patience for cooking. (He is using microwave radiation to heat his food because water molecules in food absorb the radiation). He sits down for his meal, and halfway through he starts to choke! In a panicked frenzy he runs to his bathroom to try and dislodge the obstacle from his throat. By doing so he switched on the fluorescent lights in his bathroom exposing himself to small amounts of ultraviolet radiation. (Fluorescent lights absorb UV radiation and transmit visible light along with small amounts of UV light). Unable to dislodge the obstacle from his throat Mr. Golanski seeks help from his neighbor who drives him straight to the ER. To treat him properly the physicians opt for a fluoroscopy to examine Mr. Golanski’s esophageal tract. (Thus he is making use of X-ray imaging to obtain a visual of his internal esophageal structure to check for the obstruction). Once treated and discharged from the hospital Mr. Golanski returns home grateful to have survived this ordeal with minimum damage.

Explanation:

The Electromagnetic Spectrum is the range of frequencies and wavelengths for different light waves. They range with increasing frequency from Radio waves, to Microwaves, to Infrared waves, to Visible waves, to Ultraviolet waves, to Infrared waves, to X-rays, and to Gamma rays. Several of which we use in our daily lives such as Radio waves when operating our television or using our cellular phones. We also use microwaves to heat our food or for communication with satellites. We are also exposed to natural Ultraviolet radiation from the sun; however, we can also get exposed to other forms such as from certain types of light bulbs. We see visible light in the form of all the colors we can detect around us. We make use of x-rays for imaging techniques widely used in medicine for diagnostics, as well as Infrared waves in our home security systems. The electromagnetic spectrum is always used as a part of our everyday life.

7 0
3 years ago
34. A train, starting from rest, accelerates along the platform at a uniform rate of 0.6 m/s2. A passenger standing on the platf
ira [324]

Answer:

4.08 s

Explanation:

Let the passenger took "t" time to catch the train

so in this case the total distance moved by the train + 5 m = total distance moved by the passenger

so we will have

distance moved by train is given as

d_1 = \frac{1}{2}(0.6) t^2

also the distance moved by passenger

d_2 = \frac{1}{2}(1.2) t^2

so we will have

d_1 + 5 = d_2

0.3 t^2 + 5 = 0.6 t^2

0.3 t^2 = 5

t = 4.08 s

3 0
3 years ago
Two bodies of specific heats S1 and S2 having the same heat capacities are combined to form a single composite body. What is the
Dafna11 [192]

\qquad\qquad\huge\underline{{\sf Answer}}♨

Heat capacity of body 1 :

\qquad \sf  \dashrightarrow \:m_1s_1

Heat capacity of body 2 :

\qquad \sf  \dashrightarrow \:m_2s_2

it's given that, the the head capacities of both the objects are equal. I.e

\qquad \sf  \dashrightarrow \:m_1s_1 = m_2s_2

\qquad \sf  \dashrightarrow \:m_1 =  \dfrac{m_2s_2}{s_1}

Now, consider specific heat of composite body be s'

According to given relation :

\qquad \sf  \dashrightarrow \:(m_1 + m_2) s' = m_1s_1 + m_2s_2

\qquad \sf  \dashrightarrow \:s' = \dfrac{ m_1s_1 + m_2s_2}{m_1 + m_2}

\qquad \sf  \dashrightarrow \:s' = \dfrac{ m_2s_2+ m_2s_2}{ \frac{m_2s_2}{s_1} + m_2 }

[ since, m_2s_2 = m_1s_1 ]

\qquad \sf  \dashrightarrow \:s' = \dfrac{ 2m_2s_2}{ m_2(\frac{s_2}{s_1} + 1)}

\qquad \sf  \dashrightarrow \:s' = \dfrac{ 2 \cancel{m_2}s_2}{  \cancel{m_2}(\frac{s_2}{s_1} + 1)}

\qquad \sf  \dashrightarrow \:s' = \dfrac{ 2 s_2}{  (\frac{s_2 + s_1}{s_1} )}

\qquad \sf  \dashrightarrow \: s' =  \dfrac{2s_1s_2}{s_1 + s_2}

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

6 0
3 years ago
Read 2 more answers
to 10 Hz. Superimposed on this signal is 60-Hz noise with an amplitude of 0.1 V. It is desired to attenuate the 60-Hz signal to
givi [52]

Answer:

G \sqrt{1 +(\frac{f}{f_c})^{2n}} = 1

If we square both sides we got:

G^2 (1+\frac{f}{f_c})^{2n}= 1

We divide both sides by G^2 and we got:

(1+\frac{f}{f_c})^{2n} = \frac{1}{G^2}

Now we can apply log on both sides and we got:

2n ln(1+\frac{f}{f_c}) = ln (\frac{1}{G^2})

And solving for n we got:

n = \frac{ ln (\frac{1}{G^2})}{2ln(1+\frac{f}{f_c})}

And replacing we got:

n = \frac{ln (\frac{1}{0.1^2})}{2ln(1+\frac{60}{10})}

n = \frac{4.60517}{3.8918}=1.18

And since n needs to be an integer the correct answer would be n=2 for the filter order.

Explanation:

For this case we can use the formula for the Butterworth filter gain given by:

[tec] G = \frac{1}{\sqrt{1 +(\frac{f}{f_c})^{2n}}}[/tex]

Where:

G represent the transfer function and we want that G =0.1 since the desired signal is less than 10% of it's value

f_c = 10 Hz represent the corner frequency

f= 60 Hz represent the original frequency

n represent the filter order and that's the variable that we need to find

G \sqrt{1 +(\frac{f}{f_c})^{2n}} = 1

If we square both sides we got:

G^2 (1+\frac{f}{f_c})^{2n}= 1

We divide both sides by G^2 and we got:

(1+\frac{f}{f_c})^{2n} = \frac{1}{G^2}

Now we can apply log on both sides and we got:

2n ln(1+\frac{f}{f_c}) = ln (\frac{1}{G^2})

And solving for n we got:

n = \frac{ ln (\frac{1}{G^2})}{2ln(1+\frac{f}{f_c})}

And replacing we got:

n = \frac{ln (\frac{1}{0.1^2})}{2ln(1+\frac{60}{10})}

n = \frac{4.60517}{3.8918}=1.18

And since n needs to be an integer the correct answer would be n=2 for the filter order.

7 0
3 years ago
Other questions:
  • A ray in oil (n = 1.52) reaches a boundary with water (n = 1.33) at 55.9 deg. Does it reflect internally or refract into the air
    7·1 answer
  • 34.6 cL= (blank) hL convert
    12·1 answer
  • A 0.80-kg soccer ball experinces an impulse of 25 N x s . Determine the momentum change of the soccer ball.
    8·2 answers
  • Help! pls, look at the attachment
    13·1 answer
  • An ice skater is spinning at 5.2 rev/s and has a moment of inertia of 0.32 kg * m2.
    7·1 answer
  • What is temperature?
    15·1 answer
  • Scenario 2: A dam was built California in 1999 to block the Santa Ana River and help generate
    10·1 answer
  • Which two criteria are least important for engineers to consider when developing a process to produce sulfur trioxide? A. The pr
    15·2 answers
  • A farmer heaves a 7.56 kg bale of hay with a final velocity of 4.75. What is the kinetic energy of the bale?
    12·1 answer
  • How much centripetal force is needed to make a body of mass 0.5kg to move in a circle of radius 50cm with speed 3ms^-1 ?​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!