Answer:
1807.24L
Explanation:
Using combined gas law equation:
P1V1/T1 = P2V2/T2
Where;
P1 = pressure on Earth
P2 = Pressure on Mars
V1 = volume on Earth
V2 = volume on Mars
T1 = temperature on Earth
T2 = temperature on Mars
According to the information provided of the balloon in this question;
P1 = 1 atm
P2 = 4.55 torr = 4.55/760 = 0.00599atm
V1 = 14.5L
V2 = ?
T1 = 19°C = 19 + 273 = 292K
T2 = -55°C = -55 + 273 = 218K
Using P1V1/T1 = P2V2/T2
1 × 14.5/292 = 0.00599 × V2/218
14.5/292 = 0.00599V2/218
Cross multiply
14.5 × 218 = 292 × 0.00599V2
3161 = 1.74908V2
V2 = 3161 ÷ 1.74908
V2 = 1807.24L
Answer:
1. 6.005 g
2. 22.9 mL
3. Until the mixtures becomes homogeneous.
Explanation:
A buffer is a solution where a weak acid is in equilibrium with its conjugate base (its anion) or a weak base is in equilibrium with its conjugate base (its cation). The buffer remains the pH almost unaltered because it shifts the equilibrium if an acid or base is added.
1. The pH of a buffer can be calculated by the Henderson-Hasselbalch equation:
pH = pKa + log[A⁻]/[HA]
Where [A⁻] is the concentration of the conjugate base (the anion) of the acid, and HA is the acid concentration.
5.10 = 4.76 + log[A⁻]/[HA]
log[A⁻]/[HA] = 5.10 - 4.76
log[A⁻]/[HA] = 0.34
[A⁻]/[HA] = 
[A⁻]/[HA] = 2.1878
Because the volume is the same, we can replace the concentration by the number of moles (n):
nA⁻/nHA = 2.1878
nA⁻ = 2.1878*nHA
The total number of moles of the substances in the buffer is: 0.200 mol/L * 0.5 L = 0.1 mol
nA⁻ + nHA = 0.1
2.1878*nHA + n HA = 0.1
3.1878nHA = 0.1
nHA = 0.0314 mol
nA⁻ = 0.0686 mol
The total number of moles of acetic acid needed is 0.1 mol (both substances may be from it):
m = MW*mol
m = 60.05*0.1 = 6.005 g
2. NaOH must react with acetic acid to form the anion, so for a 1:1 reaction, it will be needed 0.0686 mol of NaOH:
V = mol/concentration
V = 0.0686/3
V = 0.0229 L = 22.9 mL
3. The buffer must be a homogeneous solution, it means that it can't be noticed phases in the buffer, so the flask must be inverted until all the buffer is diluted in water, and it will be noticed when the solution becomes homogenous.
The equation for density is mass/volume. Make sure your units match what is given in the problem.
Answer: During the day, a typical greenhouse will trap Infrared photons from the sun, which allows the plants inside to stay warm at night. ... The much needed sunlight will still come through but the extra layer of protection will keep your plants safe at night
Explanation: Hope that helps :)
Answer: 5.844 grams of NaCl needed to make solution.
Explanation: