Matter exists in three states; <em>solid, liquid and gas.</em>
The statement that corrects the error in his table is:
<em>D. The Solids column and the gas column should be switched because solids have a definite shape and volume and gases have no definite shape or volume.
</em>
<em />
<em />
Looking at the table, we have the following observations.
- <em>The solid column shows indefinite shape (because the particles fill in the container)</em>
- <em>The liquid column is properly cataloged</em>
- <em>The gas column shows a definite shape</em>
<em />
Solid has definite shape, while gas doesn't.
To make corrections, Marcus needs to switch the gas and the solid column.
Read more about states of matter at:
brainly.com/question/18538345
For 5 and 6 : 5 would be 144 when you put 3 in the position of the t . And 6 would be 1,024 when you put 8 where the t is .
Given:
The graph of a function.
To find:
The zeros of this function on the graph.
Solution:
We know that, zeros are the values at which the values of the function is 0. It means, the points where the graph of function intersect the x-axis are know as zeros of the function.
From the given graph it is clear that, the graph intersect the x-axis at two points.
Therefore, the marked points on the below graph are the zeros of the function.
Hi, to find the total surface area you need to first find the area of each face. In the end it will equal 906. Hope this helps and sorry if it is confusing.
Answer:
a = 3, b = 0, c = 0, d = -2
Step-by-step explanation:
<em>To find the reflection Multiply the matrices</em>
∵ The dimension of the first matrix is 2 × 2
∵ The dimension of the second matrix is 2 × 3
<em>1. Multiply the first row of the 1st matrix by each column in the second matrix add the products of each column to get the first row in the 3rd matrix.</em>
2. Multiply the second row of the 1st matrix by each column in the second matrix add the products of each column to get the second row of the 3rd matrix
×
= ![\left[\begin{array}{ccc}(1*0+0*0)&(1*3+0*0)&(1*0+0*2)\\(0*0+-1*0)&(0*3+-1*0)&(0*0+-1*2)\end{array}\right]=\left[\begin{array}{ccc}0&3&0\\0&0&-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%281%2A0%2B0%2A0%29%26%281%2A3%2B0%2A0%29%26%281%2A0%2B0%2A2%29%5C%5C%280%2A0%2B-1%2A0%29%26%280%2A3%2B-1%2A0%29%26%280%2A0%2B-1%2A2%29%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%263%260%5C%5C0%260%26-2%5Cend%7Barray%7D%5Cright%5D)
Compare the elements in the answer with the third matrix to find the values of a, b, c, and d
∴ a = 3
∴ b = 0
∴ c = 0
∴ d = -2