Answer:
λ = 0.5×10⁻⁵ m
E = 39.78×10⁻²¹ J
The given radiation is gamma ray.
Explanation:
Given data:
Frequency of radiation = 6.0 ×10¹³ Hz
Wavelength of radiation = ?
Type of radiation = ?
Energy of radiation = ?
Solution:
Formula:
speed of light = wavelength × frequency
3 ×10⁸ m/s = λ × 6.0 ×10¹³ Hz
Hz = s⁻¹
λ = 3 ×10⁸ m/s / 6.0 ×10¹³ s⁻¹
λ = 0.5×10⁻⁵ m
Energy of radiation:
E = hf
h = planck's constant
f = frequency
E = 6.63×10⁻³⁴ j.s × 6.0 ×10¹³ s⁻¹
E = 39.78×10⁻²¹ J
The given radiation is gamma ray.
I believe the correct answer from the choices listed above is option A. To correct her measurement to standard temperature and pressure (STP), she should <span>make a volume correction based on a higher temperature of 273 K. Hope this answers the question. Have a nice day.</span>
Answer
is: activation energy of this reaction is 212,01975 kJ/mol.<span>
Arrhenius equation: ln(k</span>₁/k₂) =
Ea/R (1/T₂ - 1/T₁).<span>
k</span>₁
= 0,000643 1/s.<span>
k</span>₂
= 0,00828 1/s.
T₁ = 622 K.
T₂ = 666 K.
R = 8,3145 J/Kmol.
<span>
1/T</span>₁ =
1/622 K = 0,0016 1/K.<span>
1/T</span>₂ =
1/666 K = 0,0015 1/K.<span>
ln(0,000643/0,00828) = Ea/8,3145 J/Kmol ·
(-0,0001 1/K).
-2,55 = Ea/8,3145 J/Kmol </span>· (-0,0001 1/K).<span>
Ea = 212019,75 J/mol = 212,01975 kJ/mol.</span>
Answer:
Hypsochromic shift.
The second solvent is more polar.
Explanation:
Compound A + Solvent 1 = red
Compound A + Solvent 2 = orange
Since orange has a smaller wavelength than red, the electronic transition observed when the compound A is dissolved in solvent 2 has a higher energy.
A band transition to a lower wavelength and higher energy is called a hypsochromic shift.
The change in the color due to the solvent is called solvatochromism. Usually, when the hypsochromic shift is observed (negative solvatochromism) it means that the solvent is more polar.