0.34 moles of gas would be contained in a 11.2 L container that is at a pressure of 0.75 atm and 300 K.
<h3>HOW TO CALCULATE NUMBER OF MOLES?</h3>
The number of moles of a substance can be calculated using the following expression:
PV = nRT
Where;
- p = pressure (atm)
- v = volume (L)
- n = number of moles
- R = gas law constant
- T = temperature
0.75 × 11.2 = n × 0.0821 × 300
8.4 = 24.63n
n = 8.4 ÷ 24.63
n = 0.34 moles
Therefore, 0.34 moles of gas would be contained in a 11.2 L container that is at a pressure of 0.75 atm and 300 K.
Learn more about number of moles at: brainly.com/question/1190311
Answer:
Solubility of O₂(g) in 4L water = 3.42 x 10⁻² grams O₂(g)
Explanation:
Graham's Law => Solubility(S) ∝ Applied Pressure(P) => S =k·P
Given P = 0.209Atm & k = 1.28 x 10⁻³mol/L·Atm
=> S = k·P = (1.28 x 10⁻³ mole/L·Atm)0.209Atm = 2.68 x 10⁻³ mol O₂/L water.
∴Solubility of O₂(g) in 4L water at 0.209Atm = (2.68 x 10⁻³mole O₂(g)/L)(4L)(32 g O₂(g)/mol O₂(g)) = <u>3.45 x 10⁻² grams O₂(g) in 4L water. </u>
number of moles = 1.00 X 10^22 ÷ 6.022 × 10^23
= 0.0166 moles
mass = number of moles × molar mass
= 0.0166 × 120.37 = 2.00 g
Answer:
3:2, B
Explanation:
The mole ratio is simply the coefficients in a balanced chemical reaction and their relation to each other.
One simple way to easily know b is the correct answer is to look at the units for the answer choices. A is a ratio of Fe to Fe, C is a ratio of Mg to Fe, and d is a ratio of Mg to Fe. That alone must mean B is the correct answer.
We can also use the definition of a mole ratio, as stated above. Given that this equation is balanced, the mole ratio is simply the ratio of the coefficients, and is thus 3:2.