Answer:
a) True
Explanation:
A program-specific message provided to an individual or group with the intention of raising awareness of a health condition, motivating behavior change, removing perceived barriers to participating in a health habit, or something else relating to the program's aims and objectives. The most effective intervention messages are usually theory-based and culturally adapted.
The answer to this question is C. Lakes of hydrocarbons. Trust me this is the answer before i got the results i thought it was lakes of mercury.
Explanation:
It is given that,
Mass of an electron, 
Initial speed of the electron, 
Final speed of the electron, 
Distance, d = 5 cm = 0.05 m
(a) The acceleration of the electron is calculated using the third equation of motion as :



Force exerted on the electron is given by :



(b) Let W is the weight of the electron. It can be calculated as :



Comparison,


Hence, this is the required solution.
Answer:
x = 0.396 m
Explanation:
The best way to solve this problem is to divide it into two parts: one for the clash of the putty with the block and another when the system (putty + block) compresses it is spring
Data the putty has a mass m1 and velocity vo1, the block has a mass m2
. t's start using the moment to find the system speed.
Let's form a system consisting of putty and block; For this system the forces during the crash are internal and the moment is preserved. Let's write the moment before the crash
p₀ = m1 v₀₁
Moment after shock
= (m1 + m2) 
p₀ =
m1 v₀₁ = (m1 + m2) 
= v₀₁ m1 / (m1 + m2)
= 4.4 600 / (600 + 500)
= 2.4 m / s
With this speed the putty + block system compresses the spring, let's use energy conservation for this second part, write the mechanical energy before and after compressing the spring
Before compressing the spring
Em₀ = K = ½ (m1 + m2)
²
After compressing the spring
= Ke = ½ k x²
As there is no rubbing the energy is conserved
Em₀ = 
½ (m1 + m2)
² = = ½ k x²
x =
√ (k / (m1 + m2))
x = 2.4 √ (11/3000)
x = 0.396 m