Answer:
Solution
verified
Verified by Toppr
Given:
Mass of body = 30 kg
gravitational acceleration on the moon = 1.62 m/s
2
Weight of the body on the moon = Mass of the body×gravitational acceleration on the moon=30×1.62=48 N
<span> B. A person moving a ball through a stream of water</span>
"Balanced" means that if there's something pulling one way, then there's also
something else pulling the other way.
-- If there's a kid sitting on one end of a see-saw, and another one with the
same weight sitting on the other end, then the see-saw is balanced, and
neither end goes up or down. It's just as if there's nobody sitting on it.
-- If there's a tug-of-war going on, and there are 300 freshmen pulling on one
end of a rope, and another 300 freshmen pulling in the opposite direction on
the other end of the rope, then the hanky hanging from the middle of the rope
doesn't move. The pulls on the rope are balanced, and it's just as if nobody
is pulling on it at all.
-- If a lady in the supermarket is pushing her shopping cart up the aisle, and her
two little kids are in front of the cart pushing it in the other direction, backwards,
toward her. If the kids are strong enough, then the forces on the cart can be
balanced. Then the cart doesn't move at all, and it's just as if nobody is pushing
on it at all.
From these examples, you can see a few things:
-- There's no such thing as "a balanced force" or "an unbalanced force".
It's a <em><u>group</u> of forces</em> that is either balanced or unbalanced.
-- The group of forces is balanced if their strengths and directions are
just right so that each force is canceled out by one or more of the others.
-- When the group of forces on an object is balanced, then the effect on the
object is just as if there were no force on it at all.
<h2>
Answer:</h2>
(a) 3.96 x 10⁵C
(b) 4.752 x 10⁶ J
<h2>
Explanation:</h2>
(a) The given charge (Q) is 110 A·h (ampere hour)
Converting this to A·s (ampere second) gives the number of coulombs the charge represents. This is done as follows;
=> Q = 110A·h
=> Q = 110 x 1A x 1h [1 hour = 3600 seconds]
=> Q = 110 x A x 3600s
=> Q = 396000A·s
=> Q = 3.96 x 10⁵A·s = 3.96 x 10⁵C
Therefore, the number of coulombs of charge is 3.96 x 10⁵C
(b) The energy (E) involved in the process is given by;
E = Q x V -----------------(i)
Where;
Q = magnitude of the charge = 3.96 x 10⁵C
V = electric potential = 12V
Substitute these values into equation (i) as follows;
E = 3.96 x 10⁵ x 12
E = 47.52 x 10⁵ J
E = 4.752 x 10⁶ J
Therefore, the amount of energy involved is 4.752 x 10⁶ J
Answer:
the distance between adjacent fringes is increased by a factor o 2
Explanation:
To find how the distance between fringes is modified you can use the following formula for the calculation of the distance between fringes:

D: distance to the screen
d: distance between slits
λ: wavelength of the light
if d is decreased by a factor of 2, that is d'=1/2d, you have:

hence, the distance between adjacent fringes is increased by a factor o 2