Answer:
The path of an object in uniform motion is a straight line.
Is a solid...
when atoms or molecules or particles are in a fixed position it is a solid, it only vibrates in its place.
Answer:
d = 120 [m]
Explanation:
In order to solve this problem, we must use the theorem of work and energy conservation. Where the energy in the final state (when the skater stops) is equal to the sum of the mechanical energy in the initial state plus the work done on the skater in the initial state.
The mechanical energy is equal to the sum of the potential energy plus the kinetic energy. As the track is horizontal there is no unevenness, in this way, there is no potential energy.
E₁ + W₁₋₂ = E₂
where:
E₁ = mechanical energy in the initial state [J] (units of Joules)
W₁₋₂ = work done between the states 1 and 2 [J]
E₂ = mechanical energy in the final state = 0
E₁ = Ek = kinetic energy [J]
E₁ = 0.5*m*v²
where:
m = mass = 60 [kg]
v = initial velocity = 12 [m/s]
Now, the work done is given by the product of the friction force by the distance. In this case, the work is negative because the friction force is acting in opposite direction to the movement of the skater.
W₁₋₂ = -f*d
where:
f = friction force = 36 [N]
d = distance [m]
Now we have:
0.5*m*v² - (f*d) = 0
0.5*60*(12)² - (36*d) = 0
4320 = 36*d
d = 120 [m]
Answer:
The value of the angle is
.
Explanation:
Given:
The condition for diffraction minima is

where,
is the slit-width,
is the angle of incidence,
is the order number and
is the wavelength of the light.
The wavelength of an electron traveling through a medium is governed by de Broglie's hypothesis.
According to de Broglie's hypothesis

Here,
is Planck's constant,
is the mass of the electron and
is the velocity of the electron.
For first minimum
.
From equation (1), we have
![&& a \sin \theta = \dfrac{h}{m_{e}v}\\&or,& \theta = \sin^{-1}[\dfrac{h}{am_{e}v}]](https://tex.z-dn.net/?f=%26%26%20a%20%5Csin%20%5Ctheta%20%3D%20%5Cdfrac%7Bh%7D%7Bm_%7Be%7Dv%7D%5C%5C%26or%2C%26%20%5Ctheta%20%3D%20%5Csin%5E%7B-1%7D%5B%5Cdfrac%7Bh%7D%7Bam_%7Be%7Dv%7D%5D)
Answer:
(1)
(2)
but
transition not allowed.
Explanation:
Atoms can be described by the quantum number n, spin quantum number S, angular momentum quantum number L, and total angular momentum quantum number J. Based on approximation Russel- Saunders electron coupling, the atomic term symbol can be written as
.
The conditions or selection rule to promoting the electron are discussed below:
(1) The total spin should not change that is
.
(2) The total angular momentum change should be,
but
transition not allowed.