Answer:
V₂ = 107.84 L
Explanation:
Given data:
Initial volume = 100 L
Initial pressure = 80 KPa (80/101 =0.79 atm)
Initial temperature = 200 K
Final temperature =273 K
Final volume = ?
Final pressure = 1 atm
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁T₂ /T₁P₂
V₂ = 0.79 atm × 100 L × 273 K / 200 K × 1 atm
V₂ =21567 atm.L.K /200 K.atm
V₂ = 107.84 L
Answer:
Reducing molecules.
Explanation:
NAD (Nicotinamide adenine dinucleotide) is the important molecule used by the living organisms for the generation of ATP. NADH is used almost in every biochemical cycle like glycolysis, kreb cycle and elelctron transport chain.
The NADH molecule is used as the reducing molecule in the biosynthesis of the different reaction. The NADH molecule reduces its hydrogen ions and also carry electrons for the synthesis of molecules. The NADH molecule is also used in the shuttle system as well.
Thus, the answer is reducing molecules.
Actually, there are four kinds of reptile motion:
Concertina - vermiform. Circular muscles around the snake squeeze the front of the snake's body out long, then the latter half is pulled forward.
Rectilinear crawling - Belly scutes are moved forward individually in a wave-like motion.
Side-winding - Snake's version of "walking". Use by several species to move over fluidic substrates, such as sand.
Lateral undulation - Most common form of movement. Snake presses on alternating pressure points to force body forward (or backward)
(taken from a user on Yahoo from Correct Answers)
Answer:
D
Explanation:
They are renewable energy sources
Answer:
11.31g NaClO₂
Explanation:
<em> Is given 250mL of a 1.60M chlorous acid HClO2 solution. Ka is 1.110x10⁻². What mass of NaClO₂ should the student dissolve in the HClO2 solution to turn it into a buffer with pH =1.45? </em>
It is possible to answer this question using Henderson-Hasselbalch equation:
pH = pKa + log₁₀ [A⁻] / [HA]
<em>Where pKa is -log Ka = 1.9547; [A⁻] is the concentration of the conjugate base (NaClO₂), [HA] the concentration of the weak acid</em>
You can change the concentration of the substance if you write the moles of the substances:
[Moles HClO₂] = 250mL = 0.25L×(1.60mol /L) = <em>0.40 moles HClO₂</em>
Replacing in H-H expression, as the pH you want is 1.45:
1.45 = 1.9547 + log₁₀ [Moles NaClO₂] / [0.40 moles HClO₂]
-0.5047 = log₁₀ [Moles NaClO₂] / [0.40 moles HClO₂]
<em>0.3128 = </em>[Moles NaClO₂] / [0.40 moles HClO₂]
0.1251 = Moles NaClO₂
As molar mass of NaClO₂ is 90.44g/mol, mass of 0.1251 moles of NaClO₂ is:
0.1251 moles NaClO₂ ₓ (90.44g / mol) =
<h3>11.31g NaClO₂</h3>