Answer:
<h3>Theanswer is 6 moles</h3>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>6 moles</h3>
Hope this helps you
Answer:
The mass is 1.4701 grams and the moles is 0.01.
Explanation:
Based on the given question, the volume of the solution is 100 ml or 0.1 L and the molarity of the solution is 0.100 M. The moles of the solute (in the given case calcium chloride dihydride (CaCl2. H2O) can be determined by using the formula,
Molarity = moles of solute/volume of solution in liters
Now putting the values we get,
0.100 = moles of solute/0.1000
Moles of solute = 0.100 * 0.1000
= 0.01 moles
The mass of CaCl2.2H2O can be determined by using the formula,
Moles = mass/molar mass
The molar mass of CaCl2.2H2O is 147.01 gram per mole. Now putting the values we get,
0.01 = mass / 147.01
Mass = 147.01 * 0.01
= 1.4701 grams.
A. Jupiter. is the correct answer. Mark as brainliest please.
The atomic number (Z) of the 3 elements F, Ne, and Na, are 9, 10, and 11.
Explanation:
Now Z refers to the number of protons in the element's nucleus, and protons are POSITIVELY charged particles. So a fluoride ion, F−, has 10 electrons rather than 9 (why?), a neutral neon atom has 10 electrons, and a sodium ion, Na+, also has 10 electrons (why?).
So the 3 species are ISOELECTRONIC; they possess the same number of electrons.
You should look at the Periodic Table to confirm the electron number. Elements are (usually) electrically neutral (sometimes they can be ionic if they have lost or gained electrons). If there are 10 positively charged protons in the nucleus, there are NECESSARILY 10 electrons associated with the NEUTRAL atom. I don't know WHY I am capitalizing certain WORDS.
You might ask why sodium will form a positive ion, Na+, whereas F forms a negative ion, F−. This again is a Periodic phenomenon, and explicable on the basis of the electronic structure that the Table formalizes.
Neutral metals tend to be electron-rich species, which have 1 or more electrons in a valence shell remote from the nuclear charge. On the other hand, neutral non-metals have valence electrons in incomplete shells, that do not effectively shield the nuclear charge. The demonstrable consequence is that metals lose electrons to form positive ions, whereas non-metals gain electrons to form negative ions.
Iron rusts when exposed to air → chemical property