The formation of Fossil Fuels.
The fossil fuels such as oil originate mostly from aquatic organism and are extracted on oil rigs located in oceans and seas. Most of the oil is procured this way.
Answer:
He will decide which drink is to be served to whom, by the use of litmus paper.
Explanation:
The litmus paper is the most common indicator to determine the acidity or basicity of a solution. Blue litmus paper changes its color to red when a solution changes from basic to acidic while red litmus paper changes its color to blue when the opposite occurs (acid → basic).
First of all the litmus paper strip, pH indicator, is immersed in a solution and allowed to pass between 10 and 15 seconds while keeping the strip submerged. Afterwards it is removed, and then the strip compares the color. If the color is diffuse, there is a color scale where it is determined which solution has alkaline or acidic pH
This is not a question
what are you asking
Answer:
The number ratio is 4:7
Explanation:
Step 1: Data given
Compound 1 has 50.48 % oxygen
Compound 2 has 36.81 % oxygen
Molar mass oxygen = 16 g/mol
Molar mass manganese = 54.94 g/mol
Step 2: Calculate % manganes
Compound 1: 100 - 50.48 = 49.52 %
Compound 2: 100 - 36.81 = 63.19 %
Step 3: Calculate mass
Suppose mass of compounds = 100 grams
Compound 1:
50.48 % O = 50.48 grams
49.52 % Mn = 49.52 grams
Compound 2:
36.81 % O = 36.81 grams
63.19 % Mn = 63.19 grams
Step 4: Calculate moles
Compound 1
Moles O = 50.48 grams / 16.0 g/mol = 3.155 moles
Moles Mn = 49.52 grams / 54.94 g/mol = 0.9013 moles
Compound 2
Moles O = 36.81 grams / 16.0 g/mol = 2.301 moles
Moles Mn = 63.19 grams / 54.94 g/mol = 1.150 moles
Step 5: calculate mol ratio
We will divide by the smallest amount of moles
Compound 1
O: 3.155/0.9013 = 3.5
Mn: 0.9013 / 0.9013 = 1
Mn2O7
Compound 2
O: 2.301 / 1.150 = 2
Mn: 1.150 / 1.150 = 1
MnO2
The number ratio is 2:3.5 or 4:7
Answer:
The concentration of chloride ion is 
Explanation:
We know that 1 ppm is equal to 1 mg/L.
So, the
content 100 ppm suggests the presence of 100 mg of
in 1 L of solution.
The molar mass of
is equal to the molar mass of Cl atom as the mass of the excess electron in
is negligible as compared to the mass of Cl atom.
So, the molar mass of
is 35.453 g/mol.
Number of moles = (Mass)/(Molar mass)
Hence, the number of moles (N) of
present in 100 mg (0.100 g) of
is calculated as shown below:

So, there is
of
present in 1 L of solution.