Answer:
6
Explanation:
The atomic number for phosphorous is 15, meaning that it has 15 electrons (and protons). The first and second shells would be filled up with 2 and 8 electrons respectively, leaving 5 which goes on the third shell, which is also the valence shell, meaning phosphorous has 5 valence electrons.
Since the atomic number of sulfur is 16, the first and second shells are also filled up with 2 and 8 electrons respectively, leaving 6 to be on the third shell, the valence shell. Hence, sulfur has 6 valence electrons.
Answer:
n = 3 to n = 5
Explanation:
According to the Bohr's model of the atom, electrons in an atom absorb energy to move from a lower to higher energy level.
We must note that as we progress away from the nucleus, the energy levels of electrons become closer together. The energy difference between successive levels decreases and the wavelength of light associated with such transitions become longer.
Hence,the absorption of light of the longest wavelength corresponds to n = 3 to n = 5
.
2, 4, 1
Explanation:
We have the following chemical reaction:
Ag₂O → Ag + O₂
To balance the chemical equation the number of atoms of each element entering the reaction have to be equal to the number of atoms of each element leaving the reaction, in order to conserve the mass.
So the balanced chemical equation is:
2 Ag₂O → 4 Ag + O₂
Learn more about:
balancing chemical equations
brainly.com/question/14112113
brainly.com/question/14187530
#learnwithBrainly
Answer:
B. Warm water rises within the pot.?
Explanation
<em>There wasn't enough information given for me to safely determine the correct answer.</em>
The equation for the nuclear fusion reaction is,
4 ¹₁H → ₂⁴He + 2 ₁⁰e
Calculation of mass defect,
Δm = [mass of products - mass of reactants]
= 4(1.00782) - [4.00260 + 2(0.00054858)]
= 0.0275828 g/mole
Given that,
Mass of Hydrogen-1 = 2.58 g
The no. of moles of ₁¹H = 2.58 g / 1.00782 = 2.56 moles
Therefore, the mass defect for 2.58 g of ₁¹H is,
= 2.56 moles * (0.0275828 g / 4) = 0.01765 x 10⁻³ kg
Energy for (0.01765 x 10⁻³ kg) is,
= (0.01765 x 10⁻³ kg) (3.0 x 10⁸)² = 1.59 x 10¹² J