From the chemical formula the total mass of the compound can be determined. The mass of the 1 mole of the compound is its molar mass. The atom by which the molecule is generated, the mass of these atoms are expressed in terms of amu or atomic unit mass, but after formation of a molecule in a particular ratio the mass of each of the atom becomes the total molecular weight of the generated molecule. In this case the molecule posses three atoms X, Y and Z which are in a ratio of 2:2:7. Thus the chemical formula of the compound can be written as
.
So the total mass of the compound in amu is {(2×47)+(2×42)+(7×16)} = {94+84+112}=290 amu.
Thus 1 mole of the compound contains 290 amu or 290 g by mass.
Henceforth 20 gram of the compound is equivalent to (20/290) = 0.068 mole.
Answer:
The pH of the substance is 4,06.
Explanation:
The pH indicates the acidity or basicity of a substance. PH values between 0 and less than 7 indicate acidic solutions, 7 neutral and greater than 7 to 14 basic. It is calculated as:
pH = -log (H +)
pH= -log (8.8x10^-5)
<em>pH=4,06</em>
Answer: B. The anion affects the color of the solution more than the intensity of the color.
Explanation:
An ionic bond is gotten when an electron is transferred from a metal atom to a non-metal one. It should be noted that the ionic bonds simply has an anion and a cation.
An anion is formed when a valence election is gained by a non metal while a cation is formed when the metal ion misplaces a valence electron.
The effect of the anion of an ionic compound on the appearance of the solution is that the anion affects the color of the solution more than the intensity of the color.
Answer:
Just show them their place.
Explanation:
hope this helps