Answer:
=<em><u> 0.42 moles of CO2 </u></em>
Explanation:
From Avogadro's constant
6.02×10^23 molecules are in 1 mole of CO2
2.54×10^23 molecules will be in
=[(2.54×10^23) ÷ (6.02×10^23)]
= 0.42 moles of CO2
Answer:
The number of copper atoms 12.405 ×10²³ atoms.
The number of silver atoms 13.13 ×10²³ atoms.
Beaker B have large number of atoms.
Explanation:
Given data:
In beaker A
Number of moles of copper = 2.06 mol
Number of atoms of copper = ?
In beaker B
Mass of silver = 222 g
Number of atoms of silver = ?
Solution:
For beaker A.
we will solve this problem by using Avogadro number.
The number 6.022×10²³ is called Avogadro number and it is the number of atoms in one mole of substance.
While we have to find the copper atoms in 2.06 moles.
So,
63.546 g = 1 mole = 6.022×10²³ atoms
For 2.06 moles.
2.06 × 6.022×10²³ atoms
The number of copper atoms 12.405 ×10²³ atoms.
For beaker B:
107.87 g = 1 mole = 6.022×10²³ atoms
For 222 g
222 g / 101.87 g/mol = 2.18 moles
2.18 mol × 6.022×10²³ atoms = 13.13 ×10²³ atoms
Answer:
C₄H₂N₂
Explanation:
First we<u> calculate the moles of the gas</u>, using PV=nRT:
P = 2670 torr ⇒ 2670/760 = 3.51 atm
V = 300 mL ⇒ 300/1000 = 0.3 L
T = 228 °C ⇒ 228 + 273.16 = 501.16 K
- 3.51 atm * 0.3 L = n * 0.082atm·L·mol⁻¹·K⁻¹ * 501.16 K
Now we<u> calculate the molar mass of the compound</u>:
- 2.00 g / 0.0256 mol = 78 g/mol
Finally we use the percentages given to<em> </em><u>calculate the empirical formula</u>:
- C ⇒ 78 g/mol * 61.5/100 ÷ 12g/mol = 4
- H ⇒ 78 g/mol * 2.56/100 ÷ 1g/mol = 2
- N ⇒ 78 g/mol * 35.9/100 ÷ 14g/mol = 2
So the empirical formula is C₄H₂N₂
Water can only dissolve inorganic compounds is false