As per Le Chatelier principle, when a system in equilibrium is disturbed, the reaction will try to compensate the change to restore the equilibrium.
This reaction occurs in gas phase, so the volume is inversely proportional to the pressure.
Then a decrease in volume will cause an increase in pressure, so the system will tend to react in the direction that compensates this increase, this is the system will try to reduce the number of moles of particles to reduce the increase of the pressure.
As you see, there are 3 particles of products (2 of NO and 1 of Br) for every 2 particles of reactant (NOBr).
That means, that the equilibrium will displace to the left, this is the concentration of NOBr will increase while the concentration of NO and Br will decrease.
Answer : The moles of given compound is, 0.064 mole
Explanation : Given,
Mass of given compound = 40 g
Atomic mass of X = 50 amu
Atomic mass of Y = 45 amu
Atomic mass of Z = 10 amu
First we have to calculate the molar mass of given compound.
The given compound formula is, 
Molar mass of
= (5 × Atomic mass of X) + (7 × Atomic mass of Y) + (6 × Atomic mass of Z)
Molar mass of
= (5 × 50) + (7 × 45) + (6 × 10) = 625 g/mol
Now we have to calculate the moles of given compound.



Thus, the moles of given compound is, 0.064 mole
204.0920-It have 7 significant digits
Answer:
The answer is: phospholipid molecules
Explanation:
The plasma membrane of a cell is consists of a lipid bilayer. This lipid bilayer, also known as the phospholipid bilayer, is a polar membrane composed of two layers of lipid molecules, usually amphipathic phospholipid molecules.
The amphipathic phospholipid molecules have a hydrophilic phosphate head on the exterior and a hydrophobic tail consisting of fatty acid chain on the interior of the membrane.
Freeze drying<span> (or lyophilization) removes water from the ice cream by lowering the </span>air pressure<span> to a point where ice sublimates from a </span>solid<span> to a </span>gas<span>. The ice cream is placed in a </span>vacuum chamber<span> and frozen until the water </span>crystallizes<span>. The air pressure is lowered, creating a partial vacuum, forcing air out of the chamber; next heat is applied, </span>sublimating<span> the ice; finally a freezing coil traps the vaporized water. This process continues for hours, resulting in a freeze-dried ice cream slice. </span>