According to the use of binomial expansion, the approximate value of √3 is found by applying the infinite sum √3 = 1 + (1 /2) · 2 - (1 / 8) · 2² + (1 / 16) · 2³ - (5 / 128) · 2⁴ + (7 / 256) · 2⁵ - (21 / 1024) · 2⁶ + (33 / 2048) · 2⁷ - (429 / 32768) · 2⁸ +...
An acceptable result cannot be found manually for it requires a <em>high</em> number of elements, with the help of a solver we find that the <em>approximate</em> value of √3 is 1.732.
<h3>How to approximate the value of a irrational number by binomial theorem</h3>
Binomial theorem offers a formula to find the <em>analytical</em> form of the power of a binomial of the form (a + b)ⁿ:
(1)
Where:
- a, b - Constants of the binomial.
- n - Grade of the power binomial.
- k - Index of the k-th element of the power binomial.
If we know that a = 1, b = 2 and n = 1 / 2, then an approximate expression for the square root is:
√3 = 1 + (1 /2) · 2 - (1 / 8) · 2² + (1 / 16) · 2³ - (5 / 128) · 2⁴ + (7 / 256) · 2⁵ - (21 / 1024) · 2⁶ + (33 / 2048) · 2⁷ - (429 / 32768) · 2⁸ +...
To learn more on binomial expansions: brainly.com/question/12249986
#SPJ1
The answer is D. All you have to do is add all of the angles for each choice you're given. It has to add up to exactly 180, because every triangle is 180 degrees.
Daily, there is always something new to be learning in the science world.
Answer:
The farmer will need 7 crates.
Step-by-step explanation:
<em>It is given that there are 71 pumpkins in total.</em>
<em>And each crate holds 19 pumpkins.</em>
Let the number of crates required be<em> "n".</em>
The total number of pumpkins can be calculated by multiplying number of pumpkins in each crate with total number of crates.
Thus, the equation is


Thus, the farmer needs 7 crates to hold total of 71 pumpkins.