1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
amm1812
3 years ago
10

A slinky is stretched across a classroom and moved up and down at a frequency of 2 hz. if the corresponding wave velocity is 4.2

m s , determine the wavelength of the slinky wave.
Physics
1 answer:
marusya05 [52]3 years ago
4 0
Velocity of a wave is the amount of wavelength multiplied by its frequency. Moreover, derivations would be;wavelength?
Hence wavelength would be velocity divided by the frequency.Result is 2.1 mThank you for your question. Please don't hesitate to ask in Brainly your queries. 
You might be interested in
A straight line is drawn on the surface of a 14-cm-radius turntable from the center to the perimeter. A bug crawls along this li
sleet_krkn [62]

Answer:

v = \left[\begin{array}{c}0.66&0\end{array}\right]m/s

Explanation:

The position vector r of the bug with linear velocity v and angular velocity ω in the laboratory frame is given by:

\overrightarrow{r}=vtcos(\omega t)\hat{x}+vtsin(\omega t)\hat{y}

The velocity vector v is the first derivative of the position vector r with respect to time:

\overrightarrow{v}=[vcos(\omega t)-\omega vtsin(\omega t)]\hat{x}+[vsin(\omega t)+\omega vtcos(\omega t)]\hat{y}

The given values are:

t=\frac{x}{v}=\frac{14}{3.8}=3.7 s

\omega=\frac{45\times2\pi}{60s}=4.7\frac{1}{s}

8 0
3 years ago
a 1.25 kg block is attached to a spring with spring constant 17.0 n/m . while the block is sitting at rest, a student hits it wi
Lelu [443]

a 1.25 kg block is attached to a spring with spring constant 17.0 n/m . while the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 46.0 cm/s .The amplitude of the subsequent oscillations 48.13 cm/s

a 1.25 kilogram block is fastened to a spring with a 17.0 newtons per meter spring constant. Given that K is equal to 14 Newtons per meter and mass equals 10.5 kg. The block is then struck with a hammer by a student while it is at rest, giving it a speedo of 46.0 cm for a brief period of time. The required energy provided by the hammer, which is half mv squared, is transformed into potential energy as a result of the succeeding oscillations. This is because we know that energy is still available for consultation. So access the amplitude here from here. He will therefore be equal to and by. Consequently, the Newton's spring constant is 14 and the value is 10.5. The velocity multiplied by 0.49

Speed at X equals 0.35 into amplitude, or vice versa. At this point, the spirit will equal half of K X 1 squared plus half. Due to the fact that this is the overall energy, square is equivalent to half of a K square or an angry square. amplitude is 13 and half case 14 x one is 0.35. calculate that is equal to initial velocities of 49 squares and masses of 10.5. This will be divided in half and start at about 10.5 into the 49-square-minus-14. 13.42 into the entire square in 20.35. dividing by 10.5 and taking the square as a result. 231 6.9 Six centimeters per square second. 10.5 into 49 sq. 14. 2 into a 13.42 square entire. then subtract 10.5 from the result to get the square. So that is 48.13cm/s.

To learn more about oscillations Please click on the given link:

brainly.com/question/26146375

#SPJ4

This is incomplete question Complete Question is:

a 1.25 kg block is attached to a spring with spring constant 17.0 n/m . while the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 46.0 cm/s . what are The amplitude of the subsequent oscillations?

4 0
1 year ago
Which event in the “The Medicine Bag” is most symbolic of Martin beginning to connect with his Sioux heritage?
Sophie [7]

Answer:

A- Martin brings his friends home to meet grandpa.

Explanation:

took the test.

6 0
3 years ago
Read 2 more answers
LAST ONE! ASAP PLEASE
Doss [256]

Answer:

There are so many questions which one you don't know

4 0
3 years ago
Read 2 more answers
A firecracker breaks up into two pieces , one has a mass of 200 g and files off along the x –axis with a speed of 82.0 m/s and t
Readme [11.4K]

Answer:

A) 21.2 kg.m/s at 39.5 degrees from the x-axis

Explanation:

Mass of the smaller piece = 200g = 200/1000 = 0.2 kg

Mass of the bigger piece = 300g = 300/1000 = 0.3 kg

Velocity of the small piece = 82 m/s

Velocity of the bigger piece = 45 m/s

Final momentum of smaller piece = 0.2 × 82 = 16.4 kg.m/s

Final momentum of bigger piece = 0.3 × 45 = 13.5 kg.m/s

since they acted at 90oc to each other (x and y axis) and also momentum is vector quantity; then we can use Pythagoras theorems

Resultant momentum² = 16.4² + 13.5² = 451.21

Resultant momentum = √451.21 = 21.2 kg.m/s at angle 39.5 degrees to the x-axis  ( tan^-1 (13.5 / 16.4)

5 0
3 years ago
Other questions:
  • What is the equivalent resistance between points A and B?
    6·1 answer
  • A solid conducting sphere of radius R carries a charge Q. Calculate the electric-field energy density at a point a distance r fr
    7·1 answer
  • During a test a rocket travels upward at 90 m/s , and when it is 50 m from the ground its engine fails. Determine the maximum he
    6·2 answers
  • Suppose a profit-maximizing firm in a competitive market produces rubber bands. When the market price for rubber bands falls bel
    7·1 answer
  • What increases the work output of a machine
    9·1 answer
  • A ball with a mass of 3.7 kg is thrown downward with an initial velocity of 8 m/s from a high building. How fast will it be movi
    9·1 answer
  • Test your prediction through calculation for the situations of the clay bob and the bouncy ball. Assume each has a mass of 100 g
    11·1 answer
  • Somebody tell me what the answer is please
    5·2 answers
  • Which of the following is a<br> fossil fuel?<br> A. Coal<br> B. Wind energy<br> C. Biomass energy
    8·2 answers
  • How many drive cycles can be completed with a initially fully charged battery?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!