In order to utilize the graph, first you have to distinguish which graph accurately pertains to the two functions.
This can be done by rewriting the equations in the form y = mx + b which can be graphed with ease; where m is the slope and b is the y intercept.
-x^2 + y = 1
y = x^2 + 1
So this will be a basic y = x^2 parabola where the center intercepts on the y axis at (0, 1)
-x + y = 2
y = x +2
So this will be a basic y = x linear where the y intercept is on the y axis at (0, 2)
The choice which depicts these two graphs correctly is the first choice. The method to find the solutions to the system of equations by using the graph is by determining the x coordinate of the points where the two graphed equations intersect.
Answer:
(- 1, 1 )
Step-by-step explanation:
Given the 2 equations
2x - y = - 3 → (1)
x + y = 0 → (2)
Adding the 2 equations term by term will eliminate the term in y, that is
3x = - 3 ( divide both sides by 3 )
x = - 1
Substitute x = - 1 into either of the 2 equations and solve for y
Substituting into (2)
- 1 + y = 0 ( add 1 to both sides )
y = 1
Solution is (- 1, 1 )
We have been given that r is parallel to s. Now, if we look at angle 5 and angle 1, we can see that they are corresponding angles on parallel lines. Corresponding angles are ALWAYS equal, so therefore, your answer is 128 degrees; option A! :)
Hope this helped!
10y+50
Answer:
10(y+5)=10y+50
just
multiplying both by 10.Use distribute property.