As one moves across a period, from left to right, both the number of protons and electrons of a neutral atom increase. The enhancing number of electrons and protons results in a greater attraction between the electrons and the nucleus. This uplifted attraction pulls the electrons nearer to the nucleus, therefore, reducing the size of the atom.
On the other hand, while moving down a group, there is an increase in the number of energy levels. The enhanced number of energy levels increases the size of the atom in spite of the elevation in the number of protons. In the outermost energy levels, the protons get attracted towards the nucleus, however, the attraction is less due to an increase in the distance from the nucleus.
Explanation:
i found this the question is different but I think the situation is same
Answer:
there are approximately n ≈ 10²² moles
Explanation:
Since the radius of the earth is approximately R=6378 km= 6.378*10⁶ m , then the surface S of the earth would be
S= 4*π*R²
since the water covers 75% of the Earth's surface , the surface covered by water Sw is
Sw=0.75*S
the volume for a surface Sw and a depth D= 3 km = 3000 m ( approximating the volume through a rectangular shape) is
V=Sw*D
the mass of water under a volume V , assuming a density ρ= 1000 kg/m³ is
m=ρ*V
the number of moles n of water ( molecular weight M= 18 g/mole = 1.8*10⁻² kg/mole ) for a mass m is
n = m/M
then
n = m/M = ρ*V/M = ρ*Sw*D/M = 0.75*ρ*S*D/M = 3/4*ρ*4*π*R² *D/M = 3*π*ρ*R² *D/M
n=3*π*ρ*R² *D/M
replacing values
n=3*π*ρ*R² *D/M = 3*π*1000 kg/m³*(6.378*10⁶ m)² *3000 m /(1.8*10⁻² kg/mole) = 3*π*6.378*3/1.8 * 10²⁰ = 100.18 * 10²⁰ ≈ 10²² moles
n ≈ 10²² moles
Answer:
a) H2SO4 + 2KOH -> 2H2O + K2SO4
b) 9.809 ml
Explanation:
Number of Moles = Mass/ Molar Mass
Therefore: Mass = Number of moles * Molar Mass
--------------------------------------------
Molar mass of H2SO4:
H2= 2.02
S= 32.07
O4= 64
--------------------------------------------
H2SO4 has the molar mass of 98.09
--------------------------------------------
the Moles of H2SO4 is given to be 0.100M
Therefore:
Mass= 98.09*0.1
= 9.809g
---------------------------------------------------
Assuming that 1 g= 1 ml, the volume of sulfuric acid is 9.809 ml.
FLOOR. Most of the molecules that dont sick to something fall on the floor so most would be on the FLOOR.