Answer:
The only effect is that excess amount of energy absorbed by the electron will released to fall on lower energy state.
Explanation:
When transition occur from lower energy level to higher energy level require a gain of energy. Electron could not jump into higher energy level without gaining thew energy.
When electron jump into lower energy level from high energy level it loses the energy.
The process is called excitation and de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum.
Answer:
Sound energy is the form of energy generated when an object vibrates. Once produced through vibrations, sound energy is transferred in waves through mediums such as air and water before it reaches your ears.
Answer:
in lewis structure, a solid line is usually used to represent a bond between the atoms
Explanation:
the dots that are shown around the atom represent the valence electrons on the outer shell
when there are multiple atoms, either a pair of dots circled (one dot from each atom) or a solid line is used to show the bonds between those atoms
I need a picture in order to answer that question.
Answer:

Explanation:
1. Mass of acetylsalicylic acid (ASA)

2. Moles of ASA
HC₉H₇O₄ =180.16 g/mol

3. Concentration of ASA

4. Set up an ICE table

5. Solve for x
![K_{\text{a}} = \dfrac{\text{[H}_{3}\text{O}^{+}]\text{A}^{-}]} {\text{[HA]}} = 3.33 \times 10^{-4}\\\\\dfrac{x^{2}}{0.01757 - x} = 3.33 \times 10^{-4}\\\\\textbf{Check that }\mathbf{x \ll 0.01757}\\\\\dfrac{ 0.01757 }{3.33 \times 10^{-4}} = 53 < 400\\\\\text{The ratio is less than 400. We must solve a quadratic equation.}\\\\x^{2} = 3.33 \times 10^{-4}(0.01757 - x) \\\\x^{2} = 5.851 \times 10^{-6} - 3.33 \times 10^{-4}x\\\\x^{2} + 3.33 \times 10^{-4}x - 5.851 \times 10^{-6} = 0](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Ba%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BH%7D_%7B3%7D%5Ctext%7BO%7D%5E%7B%2B%7D%5D%5Ctext%7BA%7D%5E%7B-%7D%5D%7D%20%7B%5Ctext%7B%5BHA%5D%7D%7D%20%3D%203.33%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5C%5Cdfrac%7Bx%5E%7B2%7D%7D%7B0.01757%20-%20x%7D%20%3D%203.33%20%5Ctimes%2010%5E%7B-4%7D%5C%5C%5C%5C%5Ctextbf%7BCheck%20that%20%7D%5Cmathbf%7Bx%20%5Cll%200.01757%7D%5C%5C%5C%5C%5Cdfrac%7B%200.01757%20%7D%7B3.33%20%5Ctimes%2010%5E%7B-4%7D%7D%20%3D%2053%20%3C%20400%5C%5C%5C%5C%5Ctext%7BThe%20ratio%20is%20less%20than%20400.%20We%20must%20solve%20a%20quadratic%20equation.%7D%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%203.33%20%5Ctimes%2010%5E%7B-4%7D%280.01757%20-%20x%29%20%5C%5C%5C%5Cx%5E%7B2%7D%20%3D%205.851%20%5Ctimes%2010%5E%7B-6%7D%20-%203.33%20%5Ctimes%2010%5E%7B-4%7Dx%5C%5C%5C%5Cx%5E%7B2%7D%20%2B%203.33%20%5Ctimes%2010%5E%7B-4%7Dx%20-%205.851%20%5Ctimes%2010%5E%7B-6%7D%20%3D%200)
6. Solve the quadratic equation.


7. Calculate the pH
![\rm [H_{3}O^{+}]= x \, mol \cdot L^{-1} = 0.002258 \, mol \cdot L^{-1}\\\text{pH} = -\log{\rm[H_{3}O^{+}]} = -\log{0.002258} = \mathbf{2.65}\\\text{The pH of the solution is } \boxed{\textbf{2.65}}](https://tex.z-dn.net/?f=%5Crm%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%3D%20x%20%5C%2C%20mol%20%5Ccdot%20L%5E%7B-1%7D%20%3D%200.002258%20%5C%2C%20mol%20%5Ccdot%20L%5E%7B-1%7D%5C%5C%5Ctext%7BpH%7D%20%3D%20-%5Clog%7B%5Crm%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%20%3D%20-%5Clog%7B0.002258%7D%20%3D%20%5Cmathbf%7B2.65%7D%5C%5C%5Ctext%7BThe%20pH%20of%20the%20solution%20is%20%7D%20%5Cboxed%7B%5Ctextbf%7B2.65%7D%7D)