Answer:
we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level
for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.
Explanation:
A student throws a small rock straight upwards. The rock rises to its highest point and then falls back down. How does the speed of the rock at 2m on the way down compare with its speed at 2m on the way up?
It decreases in speed on its way down and increases in speed on its way down.
it decreases in speed on its way up because the the vertical motion is against the earths gravitational pull on an object to the earth's center
.It increases in speed on his way down because its under the influence of gravity
from newton's equation of motion we can check by
using V^2=u^2+2as
we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level
for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.
Answer:
Radius=15.773 m
Explanation:
Given data
v=29.5 km/h=8.2 m/s
μs=0.435
To find
Radius R
Solution
The acceleration is a centripetal acceleration which is experienced by the bicycle given by

This acceleration is only due to static force which given as

The maximum value of the static force is given as

where
FN is normal force equal to mass*gravity
Therefore when the car is on the verge of sliding

Therefore the minimum radius should be found by the bicycle move without sliding
So

Answer:
im pretty sure it B but I recommend waiting for another person. I used the workdone formula (Force*Dictance*cos(theta) and got 55 Joules
Explanation:
Answer:
0.76 mg/s
Explanation:
0.46 kg/week × (1 week / 7 days) × (1 day / 24 hrs) × (1 hr / 3600 s) × (1000 g/kg) × (1000 mg/g) = 0.76 mg/s