Answer:
Explanation:
The sum of kinetic and potential energy is the mechanical energy of the system. Assuming the energy of the system is conserved, which it is in your case, then the initial mechanical energy will equal the final mechanical energy. This relationship is very useful in mechanics.
Liquid has no definite volume or shape.
Answer:
<h2>6000 kg.m/s</h2>
Explanation:
The momentum of an object can be found by using the formula
momentum = mass × velocity
From the question we have
momentum = 2000 × 3
We have the final answer as
<h3>6000 kg.m/s</h3>
Hope this helps you
Answer:
Quick maths
First you find the fafarick and the lalickc and the caprisum and the joinnt
Answer:
speed and time are Vf = 4.43 m/s and t = 0.45 s
Explanation:
This is a problem of free fall, we have the equations of kinematics
Vf² = Vo² + 2g x
As the object is released the initial velocity is zero, let's look at the final velocity with the equation
Vf = √( 2 g X)
Vf = √(2 9.8 1)
Vf = 4.43 m/s
This is the speed with which it reaches the ground
Having the final speed we can find the time
Vf = Vo + g t
t = Vf / g
t = 4.43 / 9.8
t = 0.45 s
This is the time of fall of the body to touch the ground