Answer:
- Work done is maximum when the movement of object is in line and direction of force.
OR
- Work done is maximum, when displacement takes place along the direction of force.
- Work done is given by the equation
W = F.S
<em> W = F. S cos Θ</em>
<em>When cos Θ = 0° ; cos 0 = 1</em>
<span>The specific heat (or the amount of heat required to raise the temperature of a unit mass of a substance by 1 degree Celsius) of copper is about 0.386 J/g/degree Celsius. This means that if we supply 0.386 J of energy to 1 gram of copper, its temperature will increase by 1 degree Celsius.</span>
Answer:
you change the direction of the magnetic field.
Explanation:
Because the magnetic field created by the electric current in the wire is changing directions around the wire, it will repel both poles of the magnet by bending away from the wire.
If you remember the formula for potential energy,
then this question is a piece-o-cake.
<em>Potential energy = (mass) x (<u>acceleration of gravity</u>) x (height) .</em>
-- The object's mass is the same everywhere.
-- You said that the height is the same both times.
-- How about the acceleration of gravity ?
Compared to gravity on Earth, it's only 16.5 percent as much on the Moon.
So naturally, from the formula, you'd expect the Potential Energy to be less
on the Moon.