The mass of the aeroplane is 300,000 kg.
<h3>What is Newton's second law of motion?</h3>
It states that the force F is directly proportional to the acceleration a of the body and its mass.
The law is represented as
F =ma
where acceleration a = velocity change v / time interval t
Given is the aeroplane lands at a speed of 80 m/s. After landing, the aeroplane takes 28 s to decelerate to a speed of 10 m/s. The mean resultant force on the aeroplane as it decelerates is 750 000 N.
The force expression will be
F = mv/t
Substitute the values and we have
750000 = m x (80 -10)/ 28
750,000 = m x 2.5
m = 300,000 kg
Thus, the mass of the aeroplane is 300,000 kg.
Learn more about Newton's second law of motion.
brainly.com/question/13447525
#SPJ1
Answer:
Pressure, 
Explanation:
It is given that,
Combined mass of the man and the chair, m = 95 kg
Radius of the leg of chair, r = 0.5 cm = 0.005 m
A large man sits on a four-legged chair with his feet off the floor. The force acting per unit area is called the pressure exerted.


Area of 4 legs, A = 4 A



So, the pressure each leg exert on the floor is
. Hence, this is the required solution.
<span>They would feel that the water is cold.
</span> The atmosphere is heated both by the Sun and by the Earth's surface. Water radiates heat differently than land, so the air temperature over the ocean is usually different than the air temperature over land. <span>
The difference in air temperature over land compared to over water causes convection currents in the atmosphere. How would a person at the beach experience these convection currents?
</span>They would feel that the water is cold.
NOT:
They would feel the heat of the Sun.
They would feel that the sand is hot.
<span>They would feel wind as the air moves.</span>