1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LekaFEV [45]
3 years ago
6

A mass of 148 g stretches a spring 13 cm. The mass is set in motion from its equlibrium position with a downward velocity of 10

cm/s and no damping is applied.
(a) Determine the position u of the mass at any time t. Use 9.8 m/s as the acceleration due to gravity. Pay close attention to the units.
(b) When does the mass first return to its equilibrium position?
Physics
1 answer:
Charra [1.4K]3 years ago
6 0

Answer:

u(t)=1.15 \sin (8.68t)cm

0.3619sec

Explanation:

Given that

Mass,m=148 g

Length,L=13 cm

Velocity,u'(0)=10 cm/s

We have to find the position u of the mass at any time t

We know that

\omega_0=\sqrt{\frac{g}{L}}\\\\=\sqrt{\frac{980}{13}}\\\\=8.68 rad/s

Where g=980 cm/s^2

u(t)=Acos8.68 t+Bsin 8.68t

u(0)=0

Substitute the value

A=0\\u'(t)=-8.68Asin8.68t+8.68 Bcos8.86 t

Substitute u'(0)=10

8.68B=10

B=\frac{10}{8.68}=1.15

Substitute the values

u(t)=1.15 \sin (8.68t)cm

Period =T = 2π/8.68

After half period

π/8.68 it returns to equilibruim

π/8.68 = 0.3619sec

You might be interested in
Which of the following best describes why understanding a watershed and its boundaries is important in designing housing develop
vagabundo [1.1K]

Answer:

d

Explanation:

5 0
3 years ago
Click the links to open the resources below. These resources will help you complete the assignment. Once you have created your f
Paul [167]

Answer:

Explanation:

lesgse in no

3 0
3 years ago
In a heat engine if 1000 j of heat enters the system the piston does 500 j of work, what is the final internal energy of the sys
nydimaria [60]

Answer : The final energy of the system if the initial energy was 2000 J is, 3500 J

Solution :

(1) The equation used is,

\Delta U=q+w\\\\U_{final}-U_{initial}=q+w

where,

U_{final} = final internal energy

U_{initial} = initial internal energy

q = heat energy

w = work done

(2) The known variables are, q, w and U_{initial}

initial internal energy = U_{initial} = 2000 J

heat energy = q = 1000 J

work done = w = 500 J

(3) Now plug the numbers into the equation, we get

U_{final}-(2000J)=(1000J)+(500J)

(4) By solving the terms, we get

U_{final}-(2000J)=(1000J)+(500J)

U_{final}-(2000J)=1500J

U_{final}=2000J+1500J

U_{final}=3500J

(5) Therefore, the final energy of the system if the initial energy was 2000 J is, 3500 J

5 0
3 years ago
The power lines are at a high potential relative to the ground, so there is an electric field between the power lines and the gr
Amanda [17]

Answer:

The tube should be held vertically and perpendicular to the ground.

Explanation:

Answer: The tube should be held vertically and perpendicular to the ground. The reason is as follows:

Reasoning:

The power lines are parallel to the ground hence, their electric field will be perpendicular to the ground and equipotential surface will be cylindrical.

Hence, if you will put fluorescent tube parallel to the ground then both the ends of the tube will lie on the same equipotential surface and the potential difference will be zero.

So, to maximize the potential the ends of the tube must be on different equipotential surfaces. The surface which is near to the power line has high potential value and the surface which is farther from the line has lower potential value.

hence, to maximize the potential difference, the tube must be placed perpendicular to the ground.

6 0
3 years ago
n a downhill ski race, surprisingly, little advantage is gained by getting a running start. (This is because the initial kinetic
Annette [7]

Answer:

Explanation:

a ) starting from rest , so u = o and initial kinetic energy = 0 .

Let mass of the skier = m

Kinetic energy gained = potential energy lost

= mgh = mg l sinθ

= m x 9.8 x 70 x sin 30

= 343 m

Total kinetic energy at the base = 343 m  + 0 = 343 m .

b )

In this case initial kinetic energy = 1/2 m v²

= .5 x m x 2.5²

= 3.125 m

Total kinetic energy at the base

= 3.125 m  + 343 m

= 346.125 m

c ) It is not surprising as energy gained due to gravitational force by the earth is enormous . So component of energy gained due to gravitational force far exceeds the initial kinetic energy . Still in a competitive event , the fractional initial kinetic energy may be the deciding factor .

7 0
4 years ago
Other questions:
  • Explain why the brakes of a car get much hotter than the brakes of a bicycle?
    15·1 answer
  • A rocket rises vertically, from rest, with an acceleration of 3.2 m/s^2 until it runs out of fuel at an altitude of 725 m . Afte
    14·1 answer
  • (29)
    8·1 answer
  • The rebirth of science and learning during the fifteenth century is termed the
    15·1 answer
  • When the net forces equal 0 N, they are which of the following? A. Balanced B. Unbalanced C. A push D. A pull
    13·1 answer
  • A car travels at 12 m/s, how far does it travel in 15 seconds
    9·1 answer
  • What affect does doubling the net force have on the acceleration of the object (when
    10·2 answers
  • _________ is a process in which water moves through a membrane
    7·1 answer
  • A jetliner is moving at a speed of 245m/s. The vertical component of the plane's velocity is 40.6 m/s. Determine the magnitude o
    11·1 answer
  • A 5.00 kg crate is on a 21.0° hill.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!