The boiling point increase of a solution is a colligative property, which means that it is related with the solvent and the concentration of the solute, as per this formula:
ΔT = i * kb * m
Where, ΔT is the increase in the boiling point, i is the van't Hoof factor (which accounts for the numberof particles that are dissolved), kb is the boiling point and m the molality of the solution.
Gvien the normal boiling point of 100°C for pure water, ΔT = 101.4 °C - 100.0 °C = 1.4 °C.
Kb = 0.512 °C / m
m = 1.2 m
Therefore, i = ΔT / (kb * m) = 1.4°C / (0.512 °C/m * 1.2m) = 2.28
Answer: 2.28
The answer is false because receiving an electrical shock is not an example of a negative punishment if you forget to turn off the power.
The solution is basic because anything any above 7 is basic. 7 is neutral. Below 7 is acidic
Answer:
<h3>The answer is 1.65 atm</h3>
Explanation:
The new pressure can be found by using the formula for Boyle's law which is

Since we are finding the new pressure

From the question we have

We have the final answer as
<h3>1.65 atm</h3>
Hope this helps you