Answer:
d. its effective nuclear charge is lower than the other noble gases.
Explanation:
Xenon belongs to group O on the periodic table. Most of the elements here are unreactive.
Due to the large size of Xenon, the outermost electrons have very low effective nuclear charge. Effective nuclear charge is the effect of the positive charges of the nucleus on the electrons in orbits. This effect decreases outward as atomic shell increases.
Xenon has a very large atomic radius and there is weak a nuclear charge on the outermost electrons. The more electronegative elements would be able to attract some of its outermost electrons easily and form chemical bonds with xenon much more readily.
Answer:
False
Explanation:
Molecules are not more sizable atoms than the average atom. Molecules are compunds of two different symbolic elements, when you combine then you get a molecule. The answer to your question is false because if they were larger molecules, they would be in object around us but molecules are not in all objects around us.
Answer:
Conduct more trials
Explanation:
Theoretical Probability can be defined as what someone is expecting to happen
Experimental Probability on the other hand, is defined as what actually happens.
Probability is usually calculated in the same way for experimental probability and that of theoretical probability. You divide the total number of possible ways in which a particular outcome can happen, by the total number of outcomes itself.
In Experimental probability, the more times a probability is tried, it gets closer and even more closer to theoretical probability.
So, for the question, Jamie should improve the number of tries more, so as to get his experimental probability results to be closer to the theoretical probability result.
Answer:
<h2>The answer is 14.29 %</h2>
Explanation:
The percentage error of a certain measurement can be found by using the formula

From the question
actual density = 0.70 g/mL
error = 0.8 - 0.7 = 0.1
So we have

We have the final answer as
<h3>14.29 %</h3>
Hope this helps you
Answer:
MOLAR MASS = 32 g/mol
Explanation:
Condition of standard temperature and pressure(STP) are as follow:
Temperature = 273 K
Pressure = 1 atm (or 100000 Pa)
Here atm is atmosphere and Pa is Pascal
STP conditions arte used for measuring gas density and volume using Ideal Gas Law.Here 1 mole of ideal gas occupies 22.4 L of volume.
According toi Ideal Gas Equation :
PV = nRT
where P = pressure, n= number of moles, V = volume ,R= Ideal Gas Constant and T= temperature

From question:
V=280 ml = 0.28 L
P = 1 atm
R=0.08205 L atm/K mol
T=273 K
Putting values in above formula :

n = 0.0125 moles
Now 

given mass = 0.4 g (given)

On solving we get:
Molar mass = 32 g/mol