Light will travel more slowly in a material with a higher index of refraction
All machines are not 100% efficient because of <span>C. Friction</span>
Answer:
okay with you if you want to
Answer:
Work out = 28.27 kJ/kg
Explanation:
For R-134a, from the saturated tables at 800 kPa, we get
= 171.82 kJ/kg
Therefore, at saturation pressure 140 kPa, saturation temperature is
= -18.77°C = 254.23 K
At saturation pressure 800 kPa, the saturation temperature is
= 31.31°C = 304.31 K
Now heat rejected will be same as enthalpy during vaporization since heat is rejected from saturated vapour state to saturated liquid state.
Thus,
=
= 171.82 kJ/kg
We know COP of heat pump
COP = 
= 
= 6.076
Therefore, Work out put, W = 
= 171.82 / 6.076
= 28.27 kJ/kg
Answer:
140265.8 C = 1.403 × 10⁵ C
Explanation:
The battery's electric potential energy is used to account for the kinetic and potential work done in moving the car up this hill.
Potential work required to move the 757 kg car up a vertical height of 195 m = mgh
P.E = 757 × 9.8 × 195 = 1446627 J
Kinetic work done = (1/2)(m)(v²)
K.E = (1/2)(757)(25²) = 236562.5 J
Total work done in moving the car up that height = 1446627 + 236562.5 = 1683189.5 J
And this would be equal to the potential of the battery.
For the battery, potential difference = (electric potential energy)/(charges moved)
ΔV = ΔU/q
q = ΔU/ΔV
ΔU = 1683189.5 J
ΔV = 12.0 V
q = 1683189.5/12 = 140265.8 C