1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
eimsori [14]
3 years ago
8

Light travels _______ in a material with a higher index of refraction

Physics
2 answers:
tigry1 [53]3 years ago
6 0

Answer:

slower

Explanation:

AP EX verified

exis [7]3 years ago
4 0
Light will travel more slowly in a material with a higher index of refraction 
You might be interested in
On gasoline powered boats, when should the blower be activated
Verizon [17]
In gasoline powered boats, it is important to keep in mind the proper procedures in handling before activating the engine or your boat. Such as activating the blower. In activating the blower, it is advisable to turn it on after minutes of refueling and the engine should be activated afterwards. It is important to keep in mind to wait for a couple of minutes before turning it on because gasoline powered boats if not used or handled properly could cause harm such as explosion for it uses gasoline.
7 0
3 years ago
If a snail travels at 5 m/s, how far will it travel in 90 seconds?
labwork [276]

Answer:

in 90 seconds It'll travel 450m At constant speed of 5m/s

8 0
3 years ago
Read 2 more answers
you push your little sister on a swing and in 1.6 minutes you make 52 pushes what is the frequency of your swing? answer in unit
ehidna [41]
<span> If you make 46 pushes then your sister swings through 46 cycles and she does so in 90 seconds. The frequency would be 46/90 = 0.511 Hz.</span>
6 0
3 years ago
Six artificial satellites complete one circular orbit around a space station in the same amount of time. Each satellite has mass
oee [108]

Answer:

The ranking of the net force acting on different satellite from largest to smallest is {F_E} > {F_F} > {F_A} = {F_B} = {F_D} > {F_C}

Explanation:

In order to get a good understanding of this solution we need to understand that the main concepts used to solve this problem are centripetal force and velocity of satellite.

Initially, use the expression of the velocity of satellite and find out its dependence on the radius of orbit. Use the dependency in the centripetal force expression.

Finally, we find out the velocity of the six satellites and use that expression to find out the force experienced by the satellite. Find out the force in terms of mass (m) and radius of orbit (L) and at last compare the values of force experienced by six satellites.

Fundamentals

The centripetal force is necessary for the satellite to remain in an orbit. The centripetal force is the force that is directed towards the center of the curvature of the curved path. When a body moves in a circular path then the centripetal force acts on the body.

The expression of the centripetal force experienced by the satellite is given as follows:

                    {F_{\rm{c}}} = \frac{{m{v^2}}}{L}

Here, m is the mass of satellite, v is the velocity, and L is the radius of orbit.

The velocity of the satellite with which the satellite is orbiting in circular path is given as follows:

                        v = \frac{{2\pi L}}{T}

Here, T is the time taken by the satellite.

The velocity of the satellite with which the satellite is orbiting in circular path is given as follows;

                    v = \frac{{2\pi L}}{T}

Since, all the satellites complete the circular orbit in the same amount of time. The factor of   \frac{{2\pi }}{T}   is not affected the velocity value for the six satellites. Therefore, we can write the expression of v given as follows:

Substitute  v = \frac{{2\pi L}}{T} in the force expression {F_{\rm{c}}} = \frac{{m{v^2}}}{L}   as follows:

                              \begin{array}{c}\\{F_c} = \frac{{m{{\left( {\frac{{2\pi L}}{T}} \right)}^2}}}{L}\\\\ = \frac{{4{\pi ^2}}}{{{T^2}}}mL\\\end{array}

Since, all the satellites complete the circular orbit in the same amount of time. The factor of \frac{{4{\pi ^2}}}{{{T^2}}}  not affect the force value for six satellites.Therefore, we can write the expression of {F_c}  given as follows:

        {F_c} = kmL

Here, k refers to constant value and equal to  \frac{{4{\pi ^2}}}{{{T^2}}}

    {F_A} = k{m_A}{L_A}

Substitute 200 kg for {m_A}   and 5000 m for LA in the expression                                  {F_A} = k{m_A}{L_A}

\begin{array}{c}\\{F_A} = k\left( {200{\rm{ kg}}} \right)\left( {5000{\rm{ m}}} \right)\\\\ = {10^6}k{\rm{ N}}\\\end{array}

The force acting on satellite B from their rocket is given as follows:{F_B} = k{m_B}{L_B}

Substitute 400 kg for {m_B} and 2500 m for in the expression {F_B} = k{m_B}{L_B}

\begin{array}{c}\\{F_B} = k\left( {400{\rm{ kg}}} \right)\left( {2500{\rm{ m}}} \right)\\\\ = {10^6}k{\rm{ N}}\\\end{array}

The force acting on satellite C from their rocket is given as follows:{F_C} = k{m_C}{L_C}

Substitute 100 kg for {m_C}and 2500 m for in the above expression  {F_C} = k{m_C}{L_C}

\begin{array}{c}\\{F_C} = k\left( {100{\rm{ kg}}} \right)\left( {2500{\rm{ m}}} \right)\\\\ = 0.25 \times {10^6}k{\rm{ N}}\\\end{array}

The force acting on satellite D from their rocket is given as follows:{F_D} = k{m_D}{L_D}

Substitute 100 kg for {m_D} and 10000 m for {L_D} in the expression{F_D} = k{m_D}{L_D}

\begin{array}{c}\\{F_D} = k\left( {100{\rm{ kg}}} \right)\left( {10000{\rm{ m}}} \right)\\\\ = {10^6}k{\rm{ N}}\\\end{array}

The force acting on satellite E from their rocket is given as follows:{F_E} = k{m_E}{L_E}

Substitute 800 kg for {m_E}  and 5000 m for  {L_E} in the expression {F_E} = k{m_E}{L_E}

\begin{array}{c}\\{F_E} = k\left( {800{\rm{ kg}}} \right)\left( {5000{\rm{ m}}} \right)\\\\ = 4.0 \times {10^6}k{\rm{ N}}\\\end{array}

The force acting on satellite F from their rocket is given as follows:{F_F} = k{m_F}{L_F}

Substitute 300 kg for {m_F} and 7500 m for {L_F} in the expression {F_F} = k{m_F}{L_F}

\begin{array}{c}\\{F_F} = k\left( {300{\rm{ kg}}} \right)\left( {7500{\rm{ m}}} \right)\\\\ = 2.25 \times {10^6}k{\rm{ N}}\\\end{array}

The value of forces obtained for the six-different satellite are as follows.

\begin{array}{l}\\{F_A} = {10^6}k{\rm{ N}}\\\\{F_B} = {10^6}k{\rm{ N}}\\\\{F_C} = 0.25 \times {10^6}k{\rm{ N}}\\\\{F_D} = {10^6}k{\rm{ N}}\\\\{F_E} = 4.0 \times {10^6}k{\rm{ N}}\\\\{F_F} = 2.25 \times {10^6}k{\rm{ N}}\\\end{array}

     The ranking of the net force acting on different satellite from largest to smallest is {F_E} > {F_F} > {F_A} = {F_B} = {F_D} > {F_C}

7 0
4 years ago
1. What similarities do you notice
Anastasy [175]

Answer:

1. What similarities do you notice

Within a group(column)?

Within a row (period)?

2. Locate the element in Period 4, Column 1.

Predict the number of valence electrons.

Predict the Lewis Dot Structure

7 0
3 years ago
Other questions:
  • Most of the funding for research comes from the federal government or ? And is provided to Principal Investigators (PIs) through
    10·1 answer
  • A wheel rotates through 5.7 rad in 2.6 s as it is brought to rest with constant angular acceleration. Determine the wheel's init
    11·1 answer
  • Which of the following is caused by the interaction of charged particles, magnetic lines of force, and the atmosphere in polar r
    7·1 answer
  • A small toddler is playing in his yard. Over the course of 29.01 s, he walks 2.099 m S before turning N and walking 1.429 m. Wha
    11·1 answer
  • What is the purpose of the background research step of the scientific method?
    14·1 answer
  • Calculate the efficiency of a hair dryer which takes in 4500J of energy per second and transfers 150J as useful heat energy.
    9·1 answer
  • 41. Electric and magnetic forces can both make certain objects move. For example, a positively charged particle will repel anoth
    6·1 answer
  • Learning Task No. 3:
    14·1 answer
  • The classical theory of electromagnetism predicted that the energy of the electrons ejected should have been proportional to the
    6·1 answer
  • If you are given values for, Ay, and At, which kinematic equation could be used to find ūo ?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!