1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shkiper50 [21]
3 years ago
9

A battery-operated car utilizes a 12.0 V system. Initially, the car is at rest at the base of a 195 m high hill. Some time later

, the 757 kg car reaches the top of the hill with a speed of 25.0 m/s. How much charge did the batteries move through the motor to accomplish this, neglecting friction

Physics
2 answers:
ale4655 [162]3 years ago
7 0

Answer:

140265.8 C = 1.403 × 10⁵ C

Explanation:

The battery's electric potential energy is used to account for the kinetic and potential work done in moving the car up this hill.

Potential work required to move the 757 kg car up a vertical height of 195 m = mgh

P.E = 757 × 9.8 × 195 = 1446627 J

Kinetic work done = (1/2)(m)(v²)

K.E = (1/2)(757)(25²) = 236562.5 J

Total work done in moving the car up that height = 1446627 + 236562.5 = 1683189.5 J

And this would be equal to the potential of the battery.

For the battery, potential difference = (electric potential energy)/(charges moved)

ΔV = ΔU/q

q = ΔU/ΔV

ΔU = 1683189.5 J

ΔV = 12.0 V

q = 1683189.5/12 = 140265.8 C

Airida [17]3 years ago
7 0

Explanation:

Below is an attachment containing the solution.

You might be interested in
Please help (will mark brainliest)
serg [7]

Answer:

if im not mistaken i think its d let me know if correct plz

7 0
2 years ago
Read 2 more answers
1) You slam on the brakes of your car in a panic, and skid a certain distance on a straight level road. If you had been travelin
aleksandr82 [10.1K]

Answer:

d = 4 d₀o

Explanation:

We can solve this exercise using the relationship between work and the variation of kinetic energy

         W = ΔK

In that case as the car stops v_f = 0

the work is

          W = -fr d

we substitute

          - fr d₀ = 0 - ½ m v₀²

           d₀ = ½ m v₀² / fr

now they indicate that the vehicle is coming at twice the speed

          v = 2 v₀

using the same expressions we find

           d = ½ m (2v₀)² / fr

           d = 4 (½ m v₀² / fr)

           d = 4 d₀o

3 0
2 years ago
Three point charges are arranged on a line. Charge q3 = 5 nC and is at the origin. Charge q2 = - 3 nC and is at x = 4 cm. Charge
Taya2010 [7]

Answer:

q₁ = + 1.25 nC

Explanation:

Theory of electrical forces

Because the particle q₃ is close to two other electrically charged particles, it will experience two electrical forces and the solution of the problem is of a vector nature.

Known data

q₃=5 nC

q₂=- 3 nC

d₁₃=  2 cm

d₂₃ = 4 cm

Graphic attached

The directions of the individual forces exerted by q1 and q₂ on q₃ are shown in the attached figure.

For the net force on q3 to be zero F₁₃ and F₂₃ must have the same magnitude and opposite direction, So,  the charge q₁ must be positive(q₁+).

The force (F₁₃) of q₁ on q₃ is repulsive because the charges have equal signs ,then. F₁₃ is directed to the left (-x).

The force (F₂₃) of q₂ on q₃ is attractive because the charges have opposite signs.  F₂₃ is directed to the right (+x)

Calculation of q1

F₁₃ = F₂₃

\frac{k*q_{1}*q_3 }{(d_{13})^{2}  } = \frac{k*q_{2}*q_3 }{(d_{23})^{2}  }

We divide by (k * q3) on both sides of the equation

\frac{q_{1} }{(d_{13})^{2} } = \frac{q_{2} }{(d_{23})^{2} }

q_{1} = \frac{q_{2}*(d_{13})^{2}   }{(d_{23} )^{2}  }

q_{1} = \frac{5*(2)^{2} }{(4 )^{2}  }

q₁ = + 1.25 nC

3 0
3 years ago
Which is one way scientists indicate how precise and accurate there experimental measurements are
kherson [118]
They do the method 3 times to be sure. Because if you do it once, that could mean anything. If you do it twice, it may or may not have the same result. If you do it 3 times and it matches one of the previous answers, then it's likely that it's correct.
8 0
3 years ago
Which is not a correct way to measure wavelength?
Monica [59]

from rarefaction to rarefaction for a longitudinal wave
7 0
3 years ago
Read 2 more answers
Other questions:
  • Who invented the cellphone
    13·2 answers
  • Differences between <br>hor<br>rse<br>and horse​
    13·2 answers
  • Why are large astronomical bodies such as planets and stars round
    14·2 answers
  • The force of gravitation between two spherical bodies is Gm1
    13·1 answer
  • A rock weighing 20 n (mass = 2 kg) is swung in a horizontal circle of radius 2 m at a constant speed of 6 m/s. what is the centr
    13·2 answers
  • Which of the following is not supported by reliable evidence?
    12·2 answers
  • Is the term used to describe the removal of sand and soil by the wind.
    13·1 answer
  • A 5- kg object experiences forces as shown in the diagram. Which statement best describes the motion of the object
    11·1 answer
  • HELP ASAP!! WILL TRY TO GIVE BRAINLIEST
    15·1 answer
  • Please help with this :(
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!