Answer:
the answer for this is my.
Answer:
Force of static friction between the two surfaces
Explanation:
When two surfaces come into contact, they exert a force that resist the sliding of the two surfaces. This force is called static friction.
This force is given by the relation

Where,
μ - coefficient of static friction
η - normal force acting on the body
When a force acts on a body placed on a rough surface, it doesn't do any work if the applied force was less than the force of static friction.
So, in order to move the body, the applied force should be greater than the force of static friction.
Answer:
The final velocity of the car is 36 m/s.
Explanation:
Given;
initial velocity of the car, u = 20 m/s
time of the car acceleration, t = 4 s
acceleration of the car, a = 4 m/s²
the final velocity of the car is calculated as;
v = u + at
where;
v is the final velocity of the car
v = 20 + (4 x 4)
v = 36 m/s
Therefore, the final velocity of the car is 36 m/s.
To solve this problem it is necessary to apply the concepts given by Malus regarding the Intensity of light.
From the law of Malus intensity can be defined as

Where
Angle From vertical of the axis of the polarizing filter
Intensity of the unpolarized light
The expression for the intensity of the light after passing through the first filter is given by

Replacing we have that


Re-arrange the equation,

Re-arrange to find \theta





The value of the angle from vertical of the axis of the second polarizing filter is equal to 30.2°
The answer is B. Response Criteria
I hope this helps!!