Answer:
970 kN
Explanation:
The length of the block = 70 mm
The cross section of the block = 50 mm by 10 mm
The tension force applies to the 50 mm by 10 mm face, F₁ = 60 kN
The compression force applied to the 70 mm by 10 mm face, F₂ = 110 kN
By volumetric stress, we have that for there to be no change in volume, the total pressure applied by the given applied forces should be equal to the pressure removed by the added applied force
The pressure due to the force F₁ = 60 kN/(50 mm × 10 mm) = 120 MPa
The pressure due to the force F₂ = 110 kN/(70 mm × 10 mm) = 157.142857 MPa
The total pressure applied to the block, P = 120 MPa + 157.142857 MPa = 277.142857 MPa
The required force, F₃ = 277.142857 MPa × (70 mm × 50 mm) = 970 kN
Answer:
Electrical energy
Explanation:
<em>Hope </em><em>It </em><em>helps </em><em>you </em>
Answer:
Temperature decreases because the number of collision of the molecules decreases as they escape or evaporate. Molecules are in constant motion. Increase in temperature leads to increase in average kinetic energy of the molecules.
The formula for average speed is S=D/T
1. S=72m/37s
Divide
S= 1.94
Kira's average speed is 1.94m/s.
2. S=7.5km / 1.5h
S=5
Your average speed is 5km/h
3. S=1260km/3.5h
S=360
The airplanes average speed is 360km/h
Answer:
9.3 g/cm³
Explanation:
First, convert kg to g:
0.485 kg × (1000 g / kg) = 485 g
Density is mass divided by volume:
D = (485 g) / (52 cm³)
D = 9.33 g/cm³
Rounding to two significant figures, the density is 9.3 g/cm³.