Considering the given stem-and-leaf plot, the quartiles are given as follows:
- The first quartile is of 67.5.
- The second quartile, which is the median, is of 84.5.
- The third quartile is of 91.5.
<h3>What are the median and the quartiles of a data-set?</h3>
- The median of the data-set separates the bottom half from the upper half, that is, it is the 50th percentile.
- The first quartile is the median of the first half of the data-set.
- The third quartile is the median of the second half of the data-set.
There is an even number of elements(26), hence the median is the mean of the 13th and 14th elements, which are 83 and 86, hence:
Me = (83 + 86)/2 = 84.5.
The first half has 12 elements, hence the first quartile is the mean of the 6th and 7th elements, which are 67 and 68, hence:
Q1 = (67 + 68)/2 = 67.5.
The third half also has 12 elements, starting at the second 86, hence the third quartile is the mean of the 6th and 7th elements of this half, hence:
Q3 = (91 + 92)/2 = 91.5.
More can be learned about the quartiles of a data-set at brainly.com/question/28017610
#SPJ1
Answer:
C. The distribution for town A is symmetric, but the distribution for
town B is negatively skewed.
Step-by-step Explanation:
From the box plots attached in the diagram below, which shows data of low temperatures for town A and town B for some days, we can compare the shapes of the box plot by visually analysing both box plots and how the data for each town is distributed.
=> For town A, the shape of the box plot is symmetric because both quartiles seem equal, and the median also divides the rectangular box into two equal halves. Both whiskers also appear to be of equal lengths.
The box plot for Town A takes a symmetric shape, and this shows a typical normal distribution of data.
=> On the other hand, Town B data distribution is different. The median seem close to the top half of the box and does not divide the box into equal halves. This shows the distribution is skewed. Since the whisker is shorter from the upper end of the box to the left side, we can infer that the distribution for Town B is skewed to the left, and it is negatively skewed.
=> The right comparison of the shapes of the box plots is "C. The distribution for town A is symmetric, but the distribution for town B is negatively skewed."
Answer:
y = 3 x - 4
Step-by-step explanation:
Answer:
(-4) (0)
Step-by-step explanation: