Answer:
is a plot showing the change in ph of the solution in the conical flask as the reagent is added from the burette
Explanation:
like, the ph of the solution at equivalence point is dependent on the strenght of the acid and strenght of the base used in the titration
Answer:
- <em>The maximum amount of copper allowed in 100 g of water is </em><u><em>0.00013 g</em></u>
Explanation:
To find the maximum amount of copper (in grams) allowed in 100 g of water use the maximum amount ratio (1.3 mg / kg) and set a proportion with the unknown amount of copper (x) and the amount of water (100 g):
First, convert 100 g of water to kg: 100 g × 1 kg / 1000 g = 0.1 kg.
Now, set the proportion:
- 1.3 mg Cu / 1 Kg H₂O = x / 0.1 kg H₂O
Solve for x:
- x = 0.1 kg H₂O × 1.3 mg Cu / 1 kg H₂O = 0.13 mg Cu
Convert mg to grams:
- 0.13 mg × 1 g / 1,000 mg = 0.00013 g
Answer: 0.00013 g of copper.
The products will be 
<h3>Chemical reactions</h3>
Zn is higher than hydrogen in the reactivity series. Thus, it will be able to displace hydrogen from the acid.
The equation of the reaction becomes: 
Hydrogen gas is released as a result. In fact, it is one of the ways of preparing hydrogen gas in the laboratory.
More on chemical reactivity can be found here: brainly.com/question/9621716
#SPJ1
Li2O is the formula for <span> lithium oxide</span>