Answer:
Neutral solution is formed.
Explanation:
When the hydrochloric acid and sodium hydroxide which is a strong base are combined together, it produces sodium chloride which is a salt and water. This solution is known as Neutral solution because the solution do not have the characteristics or properties of either an acid or a base. If the concentration of one of the reactant is higher as compared to another reactant so the product has the characteristics of that reactant.
Answer:
A (I_2(g), Br_2 (g), Cl_2 (g), F_2 (B): The ranking can best be explained by the trend entropy decreases as 5. molar mass decreases.
B (H_2O_2 (g), H_2S(g), H_2O(g): The ranking can best be explained by the decreases a trend entropy decreases as 3. molar mass and structure complexity decreases.
C. (C(s, amorphous), C(s, graphite), C(s, diamond): The ranking can best be explained by the trend entropy decreases as 4. structure complexity decreases.
Explanation:
Hello.
In this case, we can understand a higher entropy when more disorder is present and a lower entropy when less disorder is present, thus:
A (I_2(g), Br_2 (g), Cl_2 (g), F_2 (B): The ranking can best be explained by the trend entropy decreases as 5. molar mass decreases since iodine has the greatest molar mass (254 g/mol) and fluorine the least molar mass (38 g/mol).
B (H_2O_2 (g), H_2S(g), H_2O(g): The ranking can best be explained by the decreases a trend entropy decreases as 3. molar mass and structure complexity decreases since hydrogen peroxide weights 34 g/mol as well as hydrogen sulfide but the peroxide has more bonds (more complex, higher entropy).
C. (C(s, amorphous), C(s, graphite), C(s, diamond): The ranking can best be explained by the trend entropy decreases as 4. structure complexity decreases since diamond has a well-ordered structure and amorphous carbon has a very disordered one.
Best regards.
The correct answer is (a) wave the fumes toward your nose with your hand. If you smell the chemicals directly, it could be harmful too your health, especially if they are strong. Also remember to <em>never </em>smell chemicals unless you are being told to do so.
<span>1 trial : you have nothing to compare the result with - you don't know if it's a mistake.
2 trials : you can compare results - if very different, one may have gone wrong, but which one?
3 trials : if 2 results are close and 3rd far away, 3rd probably unreliable and can be rejected.
******************************
First calculate the enthalpy of fusion. M, C and m,c = mass and
specific heat of calorimeter and water; n, L = mass and heat of fusion
of ice; T = temperature fall.
L = (mc+MC)T/n.
c=4.18 J/gK. I assume calorimeter was copper, so C=0.385 J/gK.
1. M = 409g, m = 45g. T = 22c, n = 14g
L = (45*4.18+409*0.385)*22/14 = 543.0 J/g.
2. M = 409g, m = 49g, T = 20c, n = 13g
L = (49*4.18+409*0.385)*20/13 = 557.4 J/g.
3. M = 409g, m = 54g, T = 20c, n = 14g
L = (54*4.18+409*0.385)*20/14 = 547.4 J/g.
(i) Estimate error in L from spread of 3 results.
Average L = 549.3 J/g.
average of squared differences (variance) = (6.236^2+8.095^2+1.859^2)/3 = 35.96
standard deviation = 5.9964
standard error = SD/(N-1) = 5.9964/2 = 3 J/g approx.
% error = 3/547 x 100% = 0.5%.
(ii) Estimate error in L from accuracy of measurements:
error in masses = +/-0.5g
error in T = +/-0.5c
For Trial 3
M = 409g, error = 0.5g
m = 463-409, error = sqrt(0.5^2+0.5^2) = 0.5*sqrt(2)
n =(516-463)-(448-409)=14, error = 0.5*sqrt(4) = 1.0g
K = (mc+MC)=383, error = sqrt[2*(0.5*4.18)^2+(0.5*0.385)^2] = 2.962
L = K*T/n
% errors are
K: 3/383 x 100% = 0.77
T: 0.5/20 x 100% = 2.5
n: 1.0/14 x 100% = 7.14
% errors in K and T are << error in n, so we can ignore them.
% error in L = same as in n = 7% x 547.4 = 40 (always round final error to 1 sig fig).
*************************************
The result is (i) L= 549 +/- 3 J/g or (ii) L = 550 +/- 40 J/g.
Both are very far above accepted figure of 334 J/g, so there is at least
one systematic error in the experiment or the calculations.
eg calorimeter may not be copper, so C is not 0.385 J/gK. (If it was
polystyrene, which absorbs/ transmits little heat, the effective value
of C would be very low, reducing L.)
Using +/- 40 is probably best (more cautious).
However, the spread in the actual results is much smaller; try to explain this discrepancy - eg
* measurements were "fiddled" to get better results; other Trials were made but only best 3 were chosen.
* measurements were more accurate than I assumed (eg masses to nearest 0.1g but rounded to 1g when written down).
Other sources of error:
L=(mc+MC)T/n is too high, so n (ice melted) may be too small, or T (temp fall) too high - why?
* it is suspicious that all final temperatures were 0c - was this
actually measured or just guessed? a higher final temp would reduce L.
* we have assumed initial and final temperature of ice was 0c, it may
actually have been colder, so less ice would melt - this could explain
small values of n
* some water might have been left in container when unmelted ice was
weighed (eg clinging to ice) - again this could explain small n;
* poor insulation - heat gained from surroundings, melting more ice,
increasing n - but this would reduce measured L below 334 J/g not
increase it.
* calorimeter still cold from last trial when next one started, not
given time to reach same temperature as water - this would reduce n.
Hope This Helps :)
</span>