1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maksim [4K]
2 years ago
9

20 points to whoever can solve it

Mathematics
2 answers:
vaieri [72.5K]2 years ago
8 0

Answer:

air because there is no question

Feliz [49]2 years ago
8 0
This situation represents
The rate of growth or decay, r, is equal to
year.
So the value of the computer each year is
% of the value in the previous
It will take
years for the value of the computer to reach $512.
You might be interested in
What's the area and perimeter
Dmitry_Shevchenko [17]
    perimeter should be 43 and the area should be 72m^2
                                                                              this is squared btw
6 0
3 years ago
What is 99 times 99 whoever gets write get brainiest
son4ous [18]

Answer:

9,801

Step-by-step explanation:

99*99=9,801

3 0
3 years ago
Read 2 more answers
3 1183 long division​
Triss [41]
= 394 R 1

= 394 1/3

1183 divided by 3 equals
394 with a remainder of 1
3 0
3 years ago
(20x18)x5 find the total income
nydimaria [60]
The awnser is 1,800.
8 0
3 years ago
Read 2 more answers
Find a solution of x dy dx = y2 − y that passes through the indicated points. (a) (0, 1) y = (b) (0, 0) y = (c) 1 6 , 1 6 y = (d
Leni [432]
Answers: 

(a) y = \frac{1}{1 - Cx}, for any constant C

(b) Solution does not exist

(c) y = \frac{256}{256 - 15x}

(d) y = \frac{64}{64 - 15x}

Explanations:

(a) To solve the differential equation in the problem, we need to manipulate the equation such that the expression that involves y is on the left side of the equation and the expression that involves x is on the right side equation.

Note that

 x\frac{dy}{dx} = y^2 - y
\\
\\ \indent xdy = \left ( y^2 - y \right )dx
\\
\\ \indent \frac{dy}{y^2 - y} = \frac{dx}{x}
\\
\\ \indent \int {\frac{dy}{y^2 - y}} = \int {\frac{dx}{x}} 
\\
\\ \indent \boxed{\int {\frac{dy}{y^2 - y}} = \ln x + C_1}      (1)

Now, we need to evaluate the indefinite integral on the left side of equation (1). Note that the denominator y² - y = y(y - 1). So, the denominator can be written as product of two polynomials. In this case, we can solve the indefinite integral using partial fractions.

Using partial fractions:

\frac{1}{y^2 - y} = \frac{1}{y(y - 1)} = \frac{A}{y - 1} + \frac{B}{y}
\\
\\ \indent \Rightarrow \frac{1}{y^2 - y} = \frac{Ay + B(y-1)}{y(y - 1)} 
\\
\\ \indent \Rightarrow \boxed{\frac{1}{y^2 - y} = \frac{(A+B)y - B}{y^2 - y} }      (2)

Since equation (2) has the same denominator, the numerator has to be equal. So,

1 = (A+B)y - B
\\
\\ \indent \Rightarrow (A+B)y - B = 0y + 1
\\
\\ \indent \Rightarrow \begin{cases}
 A + B = 0
& \text{(3)}\\-B = 1
 & \text{(4)}   \end{cases}

Based on equation (4), B = -1. By replacing this value to equation (3), we have

A + B = 0
A + (-1) = 0
A + (-1) + 1 = 0 + 1
A = 1 

Hence, 

\frac{1}{y^2 - y} = \frac{1}{y - 1} - \frac{1}{y}

So,

\int {\frac{dy}{y^2 - y}} = \int {\frac{dy}{y - 1}} - \int {\frac{dy}{y}} 
\\
\\ \indent \indent \indent \indent = \ln (y-1) - \ln y
\\
\\ \indent  \boxed{\int {\frac{dy}{y^2 - y}} = \ln \left ( \frac{y-1}{y} \right ) + C_2}

Now, equation (1) becomes

\ln \left ( \frac{y-1}{y} \right ) + C_2 = \ln x + C_1
\\
\\ \indent \ln \left ( \frac{y-1}{y} \right ) = \ln x + C_1 - C_2
\\
\\ \indent  \frac{y-1}{y} = e^{C_1 - C_2}x
\\
\\ \indent  \frac{y-1}{y} = Cx, \text{ where } C = e^{C_1 - C_2}
\\
\\ \indent  1 - \frac{1}{y} = Cx
\\
\\ \indent \frac{1}{y} = 1 - Cx
\\
\\ \indent \boxed{y = \frac{1}{1 - Cx}}
       (5)

At point (0, 1), x = 0, y = 1. Replacing these values in (5), we have

y = \frac{1}{1 - Cx}
\\
\\ \indent 1 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1



Hence, for any constant C, the following solution will pass thru (0, 1):

\boxed{y = \frac{1}{1 - Cx}}

(b) Using equation (5) in problem (a),

y = \frac{1}{1 - Cx}   (6)

for any constant C.

Note that equation (6) is called the general solution. So, we just replace values of x and y in the equation and solve for constant C.

At point (0,0), x = 0, y =0. Then, we replace these values in equation (6) so that 

y = \frac{1}{1 - Cx}
\\
\\ \indent 0 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1

Note that 0 = 1 is false. Hence, for any constant C, the solution that passes thru (0,0) does not exist.

(c) We use equation (6) in problem (b) and because equation (6) is the general solution, we just need to plug in the value of x and y to the equation and solve for constant C. 

At point (16, 16), x = 16, y = 16 and by replacing these values to the general solution, we have

y = \frac{1}{1 - Cx}
\\
\\ \indent 16 = \frac{1}{1 - C(16)} 
\\ 
\\ \indent 16 = \frac{1}{1 - 16C}
\\
\\ \indent 16(1 - 16C) = 1
\\ \indent 16 - 256C = 1
\\ \indent - 256C = -15
\\ \indent \boxed{C = \frac{15}{256}}




By replacing this value of C, the general solution becomes

y = \frac{1}{1 - Cx}
\\
\\ \indent y = \frac{1}{1 - \frac{15}{256}x} 
\\ 
\\ \indent y = \frac{1}{\frac{256 - 15x}{256}}
\\
\\
\\ \indent \boxed{y = \frac{256}{256 - 15x}}





This solution passes thru (16,16).

(d) We do the following steps that we did in problem (c):
        - Substitute the values of x and y to the general solution.
        - Solve for constant C

At point (4, 16), x = 4, y = 16. First, we replace x and y using these values so that 

y = \frac{1}{1 - Cx} 
\\ 
\\ \indent 16 = \frac{1}{1 - C(4)} 
\\ 
\\ \indent 16 = \frac{1}{1 - 4C} 
\\ 
\\ \indent 16(1 - 4C) = 1 
\\ \indent 16 - 64C = 1 
\\ \indent - 64C = -15 
\\ \indent \boxed{C = \frac{15}{64}}

Now, we replace C using the derived value in the general solution. Then,

y = \frac{1}{1 - Cx} \\ \\ \indent y = \frac{1}{1 - \frac{15}{64}x} \\ \\ \indent y = \frac{1}{\frac{64 - 15x}{64}} \\ \\ \\ \indent \boxed{y = \frac{64}{64 - 15x}}
5 0
3 years ago
Other questions:
  • I WILL GIVE BRAINLIEST I NEED HELPPPPPPP!!
    10·1 answer
  • Estimate 45,580-12,363 to the nearest thousands
    12·1 answer
  • What is the solution to the equation 9 –3x ≈ 7 ?
    7·1 answer
  • You need to purchase enough hamburger buns to make 30 sandwiches. Buns come in packages of 8 or 12, depending on where you shop.
    10·1 answer
  • Sophie has 5 pieces of string that are 4 yards each. She uses 3 pieces that are each 3 feet long. How much string does Sophie ha
    11·2 answers
  • In AEFG, EF = 44 centimeters and FG = 12 centimeters. Which of the following best describes the possible length, in centimeters,
    9·1 answer
  • 4^3/2-2^3*6+8(-1)^10
    7·1 answer
  • 10. At 9am the temperature was 30 degrees. By 11am the temperature was 42 degrees. By what
    9·1 answer
  • SOMEONE ILL GIVE 100 POINTS
    7·1 answer
  • V= u + at<br><br> U=1 <br> T= 1/2 <br> a=-3<br><br> Work out the value of v.
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!