Using accurate measurements, using pure chemicals and performing the reaction under the most ideal conditions is important to get a valuable percent yield.
<h3>How we calculate the percent yield?</h3>
Percent yield of any chemical reaction is define as the ratios of the actual yield to the theoretical yield of the product and multiply by the 100.
To get the high percent yield or actual yield of any reaction, we have to perform the reaction under ideal condition because if we not use the standard condition then we get the low rate of reaction. Reactants should be present in the pure form as impurity make unwanted products and reduce the productivity of main product and accurate amount of reactants also important for the spontaneous reaction.
Hence, options (a), (b) & (c) are correct.
To know more about percent yield, visit the below link:
brainly.com/question/8638404
It's a weak base bacause H C N is weak
Answer:
The Retention factor (rf) value is = 0.2
Explanation:
- Retention factor (Rf) is factor used substances that could be separated using Chromatography. Retention factor determines how fast the component can move on the chromatogram (stationary phase) after elution. Elution occurs when mobile phase (solvent) moves across the stationary phase when the solute has been spotted on the origin.
- Retention factor (Rf) ranges from value between 0 and 1. The closer the value to 1, the faster it can move upon elution. Rf can be calculated.
- Rf value = distance moved by the solute / distance moved by the solvent
= 0.40cm / 2.00cm
= 0.2
The pressure of the gas is 1.0 bar.
<em>pV</em> = <em>nRT</em>
<em>T</em> = (0 + 273.15) K = 273.15 K
<em>p</em> = (<em>nRT</em>)/<em>V</em> = (2.0 mol × 0.083 14 bar·L·K⁻¹mol⁻¹ × 273.15 K)/44.8 L = 1.0 bar
Alpha decay involves the loss of an alpha particle, aka a helium nucleus. This results in the mass number of the original element decreasing by 4 and the atomic number decreasing by 2. Assuming 23942u is uranium (92), the resulting element's atomic number is 90, making it thorium.