Answer:
The mass of a pure substance represents a specific number of pure substance 'molecules', as defined by molecular weight. The relative atomic mass (atomic weight) in grams/mole (g/mol) is the molar mass of a substance, which means it is the mass of one mole of that substance.
Explanation:
Hope this helps :)
Answer a is the correct one
FeBr₃ ⇒ limiting reactant
mol NaBr = 1.428
<h3>Further explanation</h3>
Reaction
2FeBr₃ + 3Na₂S → Fe₂S₃ + 6NaBr
Limiting reactant⇒ smaller ratio (mol divide by coefficient reaction)
211 g of Iron (III) bromide(MW=295,56 g/mol), so mol FeBr₃ :

186 g of Sodium sulfide(MW=78,0452 g/mol), so mol Na₂S :

Coefficient ratio from the equation FeBr₃ : Na₂S = 2 : 3, so mol ratio :

So FeBr₃ as a limiting reactant(smaller ratio)
mol NaBr based on limiting reactant (FeBr₃) :

Answer:
I believe Na
Explanation:
Copper, because it is the only metal out of all of them.
Therefore copper is the only element that can loose electrons to have a positive charge, it is the most likely to become a cation.
C I learned that in sophomore biology