Answer=A
To find the gcf, we need to factor each number.
154=2*7*11
196=2*2*7*7
The number have a factor of 2 and a factor of 7 in common, so...
GCF=2*7
4:3 8:6 24:18 20:15 is the complete ratio table.
Answer:
-23
Step-by-step explanation:
Let first negative integer = x
The second = x +5
Their product = 126, hence,
x * (x +5) = 126
x^2 + 5x = 126
x^2 + 5x - 126 = 0
Two numbers whose product gives - 126 and sun gives 5
x(x + 14) - 9(x+14) =0
(x - 9) = 0 or (x + 14) = 0
x = 9 or x = - 14
Since x is said to be a negative integer,, the our x = - 14
First integer = - 14
Second integer = (x + 5) = (-14 + 5) = - 9
Sum of both integers :
-14 + - 9 = - 23
9514 1404 393
Answer:
- rectangular prism: 288 ft³
- triangular prism: 72 ft³
- total: 360 ft³
Step-by-step explanation:
The volume of a rectangular prism is given by the formula ...
V = LWH . . . . . the product of length, width, height
This rectangular prism has a volume of ...
V = (12 ft)(6 ft)(4 ft) = 288 ft³ . . . . rectangular prism volume
__
The volume of a triangular prism is found from the formula ...
V = Bh
where B is the area of the triangular base, and h is the height of the prism (distance between the triangular bases). The triangular base area is found from ...
A = 1/2bh . . . . .where b is the base of the triangle, and h is its height.
Here, we have ...
B = 1/2(6 ft)(4 ft) = 12 ft²
V = Bh = (12 ft²)(6 ft) = 72 ft³ . . . . triangular prism volume
__
The total volume of the given geometry is the sum of the volumes of the parts:
aquarium volume = 288 ft³ +72 ft³ = 360 ft³
Answer:
Only option d is not true
Step-by-step explanation:
Given are four statements about standard errors and we have to find which is not true.
A. The standard error measures, roughly, the average difference between the statistic and the population parameter.
-- True because population parameter is mean and the statistic are the items. Hence the differences average would be std error.
B. The standard error is the estimated standard deviation of the sampling distribution for the statistic.
-- True the sample statistic follows a distribution with standard error as std deviation
C. The standard error can never be a negative number. -- True because we consider only positive square root of variance as std error
D. The standard error increases as the sample size(s) increases
-- False. Std error is inversely proportional to square root of n. So when n decreases std error increases