Answer:
One adult ticket is $4 and one child ticket is $7
Step-by-step explanation:
Make a system of equations
2x + 10y = 78
8x + 5y = 67
Solve by elimination, multiply the 2nd equation by -2
2x +10y = 78
-16x -10y = -134
Add the equations
-14x = -56
x = 4
The price of one adult ticket is $4
Plug 4 in as x to find y
2(4) + 10y = 78
8 + 10y = 78
10y = 70
y = 7
The price of one child ticket is $7
Answer: 4
Step-by-step explanation:
The degree is the highest exponent , in which in this problem it is 4. The 3x counts as an exponent of 1 because the variable x is 1, and the 2 counts as an exponent of zero. Which means the degree is 4.
Answer:
A solution is said to be extraneous, if it is a zero of the equation, but it does not satisfy the equation,when substituted in the original equation,L.H.S≠R.H.S.
The given equation consisting of variable , m is
![\frac{2 m}{2 m+3} -\frac{2 m}{2 m-3}=1\\\\ 2 m[\frac{1}{2 m+3} -\frac{1}{2 m-3}]=1\\\\ 2 m\times \frac{[2 m-3 -2 m- 3]}{4m^2-9}=1\\\\ -6 \times 2 m=4 m^2 -9\\\\ 4 m^2 +1 2 m -9=0\\\\m=\frac{-12 \pm\sqrt{12^2-4 \times 4 \times (-9)}}{2\times 4}\\\\m=\frac{-12 \pm \sqrt {144+144}}{8}\\\\m=\frac{-12 \pm \sqrt {288}}{8}\\\\m=\frac{-12 \pm 12 \sqrt{2}}{8}\\\\m=\frac{3}{2}\times(-1 \pm \sqrt{2})](https://tex.z-dn.net/?f=%5Cfrac%7B2%20m%7D%7B2%20m%2B3%7D%20-%5Cfrac%7B2%20m%7D%7B2%20m-3%7D%3D1%5C%5C%5C%5C%202%20m%5B%5Cfrac%7B1%7D%7B2%20m%2B3%7D%20-%5Cfrac%7B1%7D%7B2%20m-3%7D%5D%3D1%5C%5C%5C%5C%202%20m%5Ctimes%20%5Cfrac%7B%5B2%20m-3%20-2%20m-%203%5D%7D%7B4m%5E2-9%7D%3D1%5C%5C%5C%5C%20-6%20%5Ctimes%202%20m%3D4%20m%5E2%20-9%5C%5C%5C%5C%204%20m%5E2%20%2B1%202%20m%20-9%3D0%5C%5C%5C%5Cm%3D%5Cfrac%7B-12%20%5Cpm%5Csqrt%7B12%5E2-4%20%5Ctimes%204%20%5Ctimes%20%28-9%29%7D%7D%7B2%5Ctimes%204%7D%5C%5C%5C%5Cm%3D%5Cfrac%7B-12%20%5Cpm%20%5Csqrt%20%7B144%2B144%7D%7D%7B8%7D%5C%5C%5C%5Cm%3D%5Cfrac%7B-12%20%5Cpm%20%5Csqrt%20%7B288%7D%7D%7B8%7D%5C%5C%5C%5Cm%3D%5Cfrac%7B-12%20%5Cpm%2012%20%5Csqrt%7B2%7D%7D%7B8%7D%5C%5C%5C%5Cm%3D%5Cfrac%7B3%7D%7B2%7D%5Ctimes%28-1%20%5Cpm%20%5Csqrt%7B2%7D%29)
None of the two solution
, is extraneous.
Here, L.H.S= R.H.S
Option A: 0→ extraneous
Answer:
Step-by-step explanation:
In the arithmetic sequence \(t_1\), \(t_2\), \(t_3\), ..., \(t_n\), \(t_1=23\) and \(t_n= t_{n-1} - 3\) for each n > 1. What is the value of n when \(t_n = -4\)?
A. -1
B. 7
C. 10
D. 14
E. 20
Hide Answer
Official Answer and Stats are available only to registered users.
Register
/
Login
.
_________________
Best Regards,
E.
MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610
GMAT ==> 730
Step-by-step explanation:

Hence, option A is the correct answer.