Answer:
Linear and rotational Kinetic Energy + Gravitational potential energy
Explanation:
The ball rolls off a tall roof and starts falling.
Let us first consider the potential energy or more specifically gravitational potential energy (
;
= mass of the ball,
= acceleration due to gravity,
= height of the roof). This energy comes because someone or something had to do work to take the ball to the top of the roof against the force of gravity. The potential energy is naturally maximum at the top and minimum when the ball finally reaches the ground.
Now, the ball starts to roll and falls off the roof. It shall continue rotating because of inertia (Newton's first law). This contributes to the rotational kinetic energy (
;
=moment of inertia of the ball &
= angular velocity).
Finally comes the linear kinetic energy or simply, kinetic energy (
) which is caused due to the velocity
of the ball.
Answer: 800
Explanation:
1/2 x m x v^2 = m x g x h
KE = 10 x 10 x 8
KE= 800
The magnitude of the unknown height of the projectile is determined as 16.1 m.
<h3>
Magnitude of the height</h3>
The magnitude of the height of the projectile is calculated as follows;
H = u²sin²θ/2g
H = (36.6² x (sin 29)²)/(2 x 9.8)
H = 16.1 m
Thus, the magnitude of the unknown height of the projectile is determined as 16.1 m.
Learn more about height here: brainly.com/question/1739912
#SPJ1
Answer:
B can take 0.64 sec for the longest nap .
Explanation:
Given that,
Total distance = 350 m
Acceleration of A = 1.6 m/s²
Distance = 30 m
Acceleration of B = 2.0 m/s²
We need to calculate the time for A
Using equation of motion

Put the value in the equation



We need to calculate the time for B
Using equation of motion
Put the value in the equation



We need to calculate the time for longest nap
Using formula for difference of time



Hence, B can take 0.64 sec for the longest nap .