Answer:
The amplitude of the oscillation is 2.82 cm
Explanation:
Given;
mass of attached block, m = 4.1 kg
energy of the stretched spring, E = 3.8 J
period of oscillation, T = 0.13 s
First, determine the spring constant, k;

where;
T is the period oscillation
m is mass of the spring
k is the spring constant

Now, determine the amplitude of oscillation, A;

where;
E is the energy of the spring
k is the spring constant
A is the amplitude of the oscillation

Therefore, the amplitude of the oscillation is 2.82 cm
Answer:
True
Explanation:
Electronegativity difference of less than 0.4 characterized covalent bonds. For two atoms with an electronegativity difference of between 0.4 and 2.0, a polar covalent bond is formed-one that is neither ionic nor totally covalent.
Shear stress created the San Andreas Fault in Southern California. It is an example of a <span>reverse fault.</span>
The moment of inertia is the rotational analog of mass, and it is given by
the product of mass and the square of the distance from the axis.
- The moment of inertia changes as the position of the weight is changed, which indicates that; statement is incorrect
Reasons:
The weight on each arm that have adjustable positions can be considered as point masses.
The moment of inertia of a point mass is <em>I</em> = m·r²
Where;
m = The mass of the weight
r = The distance (position) from the center to which the weight is adjusted
Therefore;
The moment of inertia, <em>I </em>∝ r²
Which gives;
Doubling the distance from the center of rotation, increases the moment of inertia by factor of 4.
Therefore, the statement contradicts the relationship between the radius of rotation and moment of inertia.
Learn more about moment of inertia here:
brainly.com/question/4454769