Answer:
451.13 J/kg.°C
Explanation:
Applying,
Q = cm(t₂-t₁)............... Equation 1
Where Q = Heat, c = specific heat capacity of iron, m = mass of iron, t₂= Final temperature, t₁ = initial temperature.
Make c the subject of the equation
c = Q/m(t₂-t₁).............. Equation 2
From the question,
Given: Q = 1500 J, m = 133 g = 0.113 kg, t₁ = 20 °C, t₂ = 45 °C
Substitute these values into equation 2
c = 1500/[0.133(45-20)]
c = 1500/(0.133×25)
c = 1500/3.325
c = 451.13 J/kg.°C
Light that enters the new medium <em>perpendicular to the surface</em> keeps sailing straight through the new medium unrefracted (in the same direction).
Perpendicular to the surface is the "normal" to the surface. So the angle of incidence (angle between the laser and the normal) is zero, and the law of refraction (just like the law of reflection) predicts an angle of zero between the normal and the refracted (or the reflected) beam.
Moral of the story: If you want your laser to keep going in the same direction after it enters the water, or to bounce back in the same direction it came from when it hits the mirror, then shoot it <em>straight on</em> to the surface, perpendicular to it.
Answer:
The maximum velocity is 0.377 m/s
Explanation:
Please, the solution is in the Word file attached
Answer:
86605.08 N
Explanation:
The equation to calculate the force is:
Force = mass * acceleration
The force and the acceleration does not have the same direction in this case, so we need to decompose the force into its horizontal component, which is the force that will generate the horizontal acceleration:
Force_x = Force * cos(30)
Then, we have that:
Force_x = mass * acceleration
Force * cos(30) = 25000 * 3
Force * 0.866 = 75000
Force = 75000 / 0.866 = 86605.08 N
D, Mercury as a weaker gravitational pull! Due to mercury being farther from the sun and it being a smaller planet it has a weaker pull