Answer:
Well, I think you're talking about kinematics, especially uniform rectilinear motion. We know that there is a specific equation for that:
S = Vt + S0
With S being the distance, V the velocity, t the time and S0 the initial distance (initial displacement).
From this you can calculate t, if that's what you want.
Answer
given,
mass of the piano = 170 kg
angle of the inclination = 20°
moves with constant velocity hence acceleration = 0 m/s²
neglecting friction
so, force required to pull the piano
F = m g sin θ
F = 170 × 9.81 × sin 20°
F = 570.39 N
so, force required by the man to push the piano is F = 570.39 N
Answer:
f = 485.62 N
Explanation:
Since, the bag is moving with some acceleration. Hence, the unbalanced force will be given as:
Unbalanced Force = Horizontal Component Applied Force - Frictional Force
Unbalanced Force = Fx - f
But, from Newtons Second Law of Motion:
Unbalanced Force = ma
comparing the equations:
ma = Fx - f
f = F Cos θ - ma
where,
f = frictional force = ?
F = Applied force = 593 N
m = mass of person = 49 kg
a = acceleration = 0.57 m/s²
θ = Angle with horizontal = 30°
Therefore,
f = (593 N)(Cos 30°) - (49 kg)(0.57 m/s²)
f = 513.55 N - 27.93 N
<u>f = 485.62 N</u>
Friction occurs between two contacting surfaces. The coefficient of friction is very much dependent on the roughness of these surfaces. Some of the many ways in which the coefficient can be lessened or decreased are to lubricate the surface or make it shiny by eliminating the spikes which caused the roughness.