Its total mechanical energy is <em>2,000 J</em>.
We don't have enough information to say anything about its heat energy, its chemical energy, or the energy due to any electrical charge it may be carrying or any magnetic field it may have.
<em>The correct answer is option</em><em> B.</em> The maximum height that can be reached by the stone is determined as 11.5 m.
<h3>
Maximum height attained by the stone </h3>
The maximum height attained by the stone when it is a 2/3 of its total height is calculated as follows;
v² = u² - 2gh
where;
- v is final velocity at maximum height, v = 0
- u is initial velocity
- g is acceleration due to gravity
0 = u² - 2gh
2gh = u²
h = u²/2g
h = (15²)/(2 x 9.8)
h = 11.48 m
h = 11.5 m
Thus, the maximum height that can be reached by the stone is determined as 11.5 m
Learn more about maximum height here: brainly.com/question/12446886
#SPJ1
Answer:
and
Explanation:
See attached figure.
E due to sphere
E due to particule
(1)
according to the law of gauss and superposition Law:
; electric field due to the small sphere with r1=R/4
then: (2)
on the other hand, for the particule:
⇒ (3)
We replace (2) y (3) in (1):
--------------------
if R<x<2R AND
remember that
then:
solving:
but: R<x<2R
so :
the relation that relates the speed of wave, frequency of wave and wavelength is given as
wavelength =
the speed of wave in a medium remains constant. hence the wavelength is inversely related to the frequency of wave.
that means, as the frequency is increased, the wavelength decreases and vice versa.
hence the correct choice is
B decreases