They carry opposite charge ( one has negative charge and one has positive charge)
<span>2. mass of both objects doubled?
Hope it helped!</span>
The answer is:
B. <span>X: Work is done to the system and temperature increases.
Y: Work is done by the system and temperature decreases.</span>
F = qE + qV × B
where force F, electric field E, velocity V, and magnetic field B are vectors and the × operator is the vector cross product. If the electron remains undeflected, then F = 0 and E = -V × B
which means that |V| = |E| / |B| and the vectors must have the proper geometrical relationship. I therefore get
|V| = 8.8e3 / 3.7e-3
= 2.4e6 m/sec
Acceleration a = V²/r, where r is the radius of curvature.
a = F/m, where m is the mass of an electron,
so qVB/m = V²/r.
Solving for r yields
r = mV/qB
= 9.11e-31 kg * 2.37e6 m/sec / (1.60e-19 coul * 3.7e-3 T)
= 3.65e-3 m
The lungs art part of The excretory<span> system....
</span><span>somatic nervous system is ..... </span><span>autonomic nervous system<span>....
</span></span>
The process in which organ systems work to maintain a stable internal environment is called homeostasis. Keeping a stable internal environment requires constant adjustments. Here are just three of the many ways that human organ systems help the body maintain homeostasis:
Respiratory system: A high concentration of carbon dioxide in the blood triggers faster breathing. The lungs exhale more frequently, which removes carbon dioxide from the body more quickly.
Excretory system: A low level of water in the blood triggers retention of water by the kidneys. The kidneys produce more concentrated urine, so less water is lost from the body.
Endocrine system: A high concentration of sugar in the blood triggers secretion of insulin by an endocrine gland called the pancreas. Insulin is a hormone that helps cells absorb sugar from the blood.