Answer:
a. B = 0.20T
b. u = 17230.6 J/m³
c. E = 0.236J
d. L = 5.84*10^-5 H
Explanation:
a. In order to calculate the magnetic field in the solenoid you use the following formula:
(1)
μo: magnetic permeability of vacuum = 4π*10^-7 T/A
n: turns of the solenoid = 460
L: length of the solenoid = 25.0cm = 0.25m
i: current = 90.0A
You replace the values of the parameters in the equation (1):

The magnetic field in the solenoid is 0.20T
b. The magnetic permeability of air is approximately equal to the magnetic permeability of vacuum. To calculate the energy density in the solenoid you use:

The energy density is 17230.6 J/m³
c. The total energy contained in the solenoid is:
(2)
V is the volume of the solenoid and is calculated by assuming the solenoid as a perfect cylinder:

A: cross-sectional area of the solenoid = 0.550 cm^2 = 5.5*10^-5m^2

Then, the energy contained in the solenoid is:

The energy contained is 0.236J
d. The inductance of the solenoid is calculated as follow:

The inductance of the solenoid is 5.84*10^-5 H
<u>Hello and Good Morning/Afternoon</u>:
<em>Original Question: C₂H₅OH + __O₂ → __CO₂ + __ H₂O</em>
<u>To balance this equation</u>:
⇒ must ensure that there is an equal number of elements on both sides of the equation at all times
<u>Let's start balancing:</u>
- On the left side of the equation, there are 2 carbon molecule
⇒ but only so far one on the right side
C<em>₂H₅OH + __O₂ → 2CO₂ + __ H₂O</em>
- On the left side of the equation, there are 6 hydrogen molecules
⇒ but only so far two on the right side
C<em>₂H₅OH + __O₂ → 2CO₂ + 3H₂O</em>
- On the right side of the equation, there are 7 oxygen molecules
⇒ but only so far three on the left side
C<em>₂H₅OH + 3O₂ → 2CO₂ + 3H₂O</em>
<u>Let's check and make sure we got the answer:</u>
C<em>₂H₅OH + 3O₂ → 2CO₂ + 3H₂O</em>
<em> 2 Carbon ⇔ 2 Carbon</em>
<em> 6 Hydrogen ⇔ 6 Hydrogen</em>
<em> 7 Oxygen ⇔ 7 oxygen</em>
<u>Thefore the coefficients in order are</u>:
⇒ 1, 3, 2, 3
<u>Answer: 1,3,2,3</u>
Hope that helps!
#LearnwithBrainly<em> </em>
Answer:
The atmospheric pressure is
.
Explanation:
Given that,
Atmospheric pressure
drop height h'= 27.1 mm
Density of mercury 
We need to calculate the height
Using formula of pressure

Put the value into the formula



We need to calculate the new height




We need to calculate the atmospheric pressure
Using formula of atmospheric pressure

Put the value into the formula


Hence, The atmospheric pressure is
.
We have that the instantaneous velocity of the
shuttlecock when it hits the ground is

From the question we are told
Assuming the acceleration is still -9.81 m/s2, what is the instantaneous velocity of the
shuttlecock when it hits the ground? Show your work below.
Generally the equation for acceleration is mathematically given as

Where
acceleration is still -9.81 m/s2,
Hence,

Therefore

For more information on this visit
brainly.com/question/12319416?referrer=searchResults
In order to find the solid, you would want the object in which sound travels the fastest
In this case, since in object C, the speed of sound is the fastest, it is the most likely to be a solid
So object C is most likely to be a solid