Stars are made of very hot gas. This gas is mostly hydrogen and helium, which are the two lightest elements. Stars shine by burning hydrogen into helium in their cores, and later in their lives create heavier elements.
Answer:
13.4 x 10 raise to power -19 C
Explanation:
. The distance moved by a charge in the direction of a uniform electric field is d= 1.8 cm =0.018 m
. The uniform electric field is E = 214 N/M
, The decrease in electrical potential energy is
d(P.E) = 51.63 x 10 raise to power -19 J
Let the magnitude of the charge of the moving particle be q
which is given by the equation
d(P.E) =qEd
51.63 x 10 power -19 = q(214)(0.018)
51.63 x 10 power -19 =3.852q
by making q the formular,
q = 13.4 x 10 power -19 C
Answer:
Groceries stay in the bag.
Explanation:
Given:
Maximum force = 250 N
Bag filled with = 20 kg
Lifted acceleration = 
Solution:
We need to calculate the exerted force on the grocery bag by using Newton's second law.

Where:
F = Exerted force on the object.
m = Mass of the object in kg
a = Acceleration of the object in 
Now, we substitute m = 20 kg and a =
in Newton's second law,


Since, the exerted force on the bag is less than 250 N, the groceries will stay in the bag.
Answer:
θ = (7π / 3) rad
Explanation:
given,
displacement of simple harmonic motion along x-axis
equation is given as
x = 5 sin (π t + π/3 )
general equation of simple harmonic motion
x = A sin θ
θ is the phase angle
θ = π t + π/3
at t = 2 s


Phase of the motion at t =2 s is θ = (7π / 3) rad
It is fairly easy to build an electromagnet. All you need to do is wrap some insulated copper wire around an iron core. If you attach a battery to the wire, an electric current will begin to flow and the iron core will become magnetized. When the battery is disconnected, the iron core will lose its magnetism. Follow these steps.
Step 1 - Gather the Materials
One iron nail fifteen centimeters (6 in) long
Three meters (10 ft) of 22 gauge insulated, stranded copper wire
One or more D-cell batteries
Step 2 - Remove some Insulation
Step 3 - Wrap the Wire Around the Nail
Step 4 - Connect the Battery