sinA - cosA +1 / sinA + cosA -1 = secA + tanA
Now secA = 1/cosA and tanA = sinA/cosA
So sinA - cosA +1 / sinA + cosA -1 = 1/cosA + sinA / cosA
From now on I'll write sinA = s and cosA = c :-
(s - c + 1 )/ (s + c - 1) = 1/c + s/c
(s - c + 1) / (s + c - 1) = (1 + s) / c
Cross multiply:-
s + c - 1 + s^2 + sc - s = sc - c^2 + c
s^2 + c + sc - 1 = sc - c^2 + c
s^2 - 1 + sc - sc + c - c = -c^2
s^2 - 1 = -c^2
-(1 - s^2) = - c^2
Now 1 - s^2 = c^2 so:-
- c^2 = - c^2
So the identity is proved
Answer:
original: 2x4
scale factor: 8
new dimensions:
2x8=16
4x8=32
(To get the new dimensions all you have to do is multiply the sides by the scale factor)
Step-by-step explanation:
y = -x² - 2x + 3
y - 3 = -x² - 2x + 3 - 3
y - 3 = -x² - 2x
y - 3 - 1 = -x² - 2x - 1
y - 4 = -(x²) - (2x) - (1)
y - 4 = -(x² + 2x + 1)
y - 4 = -(x² + x + x + 1)
y - 4 = -(x(x) + x(1) + 1(x) + 1(1))
y - 4 = -(x(x + 1) + 1(x + 1))
y - 4 = -(x + 1)(x + 1)
y - 4 = -(x + 1)²
y - 4 + 4 = -(x + 1)² + 4
y = -(x + 1)² + 4
Answer:
1/(u-3)
Step-by-step explanation:
(u+3)/(u^2-9)
(u+3)/[(u+3)(u-3)]
cancel out the (u+3)'s,
you get 1/(u-3).
Answer:
A vector's magnitude represents its length, so your answer is C, the length of a vector.
Step-by-step explanation: