The answer is:  "2.5 years" . 
___________________________________________________
  Note:   I = P * r * t  ;    { " Interest = Principal * rate * time "} ; 
          →     Solve for "t" {"time", in years} ;  
Divide each side of the equation by "{P * r}"  ;  
   to isolate "t" on one side of the equation ;
→  I / (P * r)  = {P * r * t) / (P * r} ; 
to get:  " I / (P * r) = t " ;  
  ↔  t = I / (P * r) ; 
Given:  I = $450 ;  
  
            <span>P = $2400 ; 
            r = 7.5% = 7.5/100 = 0.075 ; 
Plug in these values into the formula to solve for the time, "t" :
        </span>→  t  =  I  /  (P  *  r )   ;  
                 =  $450  /   (<span>$2400 * 0.075) ;
                 =  </span>$450  /   ($2400 * 0.075) ;
                 =  $450 / $180 ; 
                 =  $45 / $18 ; 
                 =  ($45 ÷ 9) / ($18 ÷ 9) 
                 =  $5 / $2 ; 
                 =  2.5  ; 
        →  t  =  2.5 years.
_______________________________________________________
The answer is:  "2.5 years" . 
_______________________________________________________
        
             
        
        
        
Answer:
B
Step-by-step explanation:
The other answers don't divide into rational numbers
 
        
             
        
        
        
Answer:
I think d 
Step-by-step explanation:
.....................
 
        
             
        
        
        
Answer:
3.33333333333
Step-by-step explanation: